Publications by authors named "Chu Hongtao"

Hypochlorite (ClO) as a kind of highly toxic pollutant has garnered significant interest in detection methods, highlighting the pressing need to develop intelligent functional materials for the qualitative and quantitative analysis of ClO in aqueous solutions. Herein, a ratiometric fluorescent sensor was prepared by the combination of acriflavine (Acr) and UIO-66 via a post-synthetic modification strategy. Acr/UIO-66 exhibited both high crystallinity typical of metal-organic frameworks and demonstrated good fluorescent and thermal stability.

View Article and Find Full Text PDF

The excellent stability of covalent organic frameworks (COFs) and the diversity of metal organic frameworks (MOFs) make MOF/COF hybrid materials promising candidates for chromatographic stationary phases. In this paper, a TpBD/UiO-66-NH hybrid material was synthesized through a Schiff-base reaction between TpBD COFs and UiO-66-NH MOFs; characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy; and bonded to a capillary to prepare a TpBD/UiO-66-NH-bonded open tubular capillary electrochromatography (OT-CEC) column. Results suggested that the hybrid material had the crystal morphology of a single COF and MOF, a micro-mesoporous structure, and good thermal stability.

View Article and Find Full Text PDF

In this study, three different materials were prepared: dendritic fiber-type silica (KCC-1), zeolitic imidazolate framework-8 (ZIF-8), and a new composite material called KCC-1@ZIF-8. These materials were synthesized using microemulsion, stirring, and coating methods, respectively. The properties of the materials were characterized using various techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), TGA and X-ray diffraction (XRD).

View Article and Find Full Text PDF
Article Synopsis
  • - Tripropyl phosphate (TnPP) is a widely used flame retardant found in textiles, plastics, and coatings, with its residues often detected in environmental and food samples.
  • - A study evaluated a certified reference material (CRM) for TnPP's purity using mass balance (MB) and quantitative nuclear magnetic resonance spectroscopy (qNMR), revealing structural impurities and determining its purity to be approximately 994.1 mg/g.
  • - The verified CRM has an expanded uncertainty of 3.4 mg/g, making it suitable for preparing calibration solutions to monitor TnPP levels in plastics and food, ensuring accuracy in testing.
View Article and Find Full Text PDF

The chlortetracycline (CTC) residue in food poses a threat to human health. Therefore, developing sensitive, convenient and selective analytical methods for CTC detection is crucial. This study innovatively uses tin disulfide/bimetallic organic framework (SnS/ZnCo-MOF) nanocomposites in conjunction with gold nanoparticles (AuNPs) to co-modify a glassy carbon electrode (GCE).

View Article and Find Full Text PDF

A novel fluorescence sensor based on a porphyrinic zirconium-based metal-organic framework, L-cysteine-modified PCN-222 (L-Cys/PCN-222), was developed to selectively recognize histidine enantiomers and sensitively detect Hg. The dual-functional sensor was successfully prepared the solvent-assisted ligand incorporation method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), H nuclear magnetic resonance (H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption analyses. L-Cys/PCN-222 not only showed a higher quenching response for L-histidine than that for D-histidine with a fast fluorescent response rate of <40 s but also exhibited low detection limits for L- and D-histidine (2.

View Article and Find Full Text PDF

Light harvesting based on a microporous zeolite imidazole backbone (MOF) has attracted considerable interest as a fluorescent sensor for the detection of analytes. In this work, we have prepared a novel complex containing quantum dots of doped rare earth elements by a one-pot method. to be applied to the fluorescence detection of pollution hazards.

View Article and Find Full Text PDF

Olaquindox (OLA) in food from its illegal use possesses great harmful effects on humans, making it important to develop sensitive, inexpensive, and convenient methods for OLA detection. This study innovatively presented a molecularly imprinted electrochemical sensor based on the synergistic effects of nitrogen-doped graphene quantum dots (N-GQDs) and a nickel-based metal-organic framework functionalized with silver nanoparticles (Ag/Ni-MOF) for OLA detection. N-GQDs and Ag/Ni-MOF with unique honeycomb structures were sequentially modified on the glassy carbon electrode (GCE) surface to accelerate the electron transfer rate and increase the available region of the electrode.

View Article and Find Full Text PDF

We report a post-synthesis modification for the preparation of a novel chiral fluorescent covalent organic framework (COF) for selective recognization of imazamox enantiomers. In this study, chiral COF was firstly synthesized via a Schiff-base reaction between 2,5-dihydroxyterephthalaldehyde (Dha) and 1,3,5-tris(4-aminophenyl)benzene (Tab) followed by a nucleophilic substitution using (1S)-(+)-10-camphorsulfonyl chloride as chiral modifier. The resulting regular spherical chiral COF Dha Tab not only presented the high optical efficiency, strong covalent bond structure, good crystallinity, large specific surface area but also showed the specific enantioselectivity and quick identification for imazamox enantiomers among five pesticide enantiomers (S/R-imazamox, acephate, acetochlor, propisochlor and metalaxyl).

View Article and Find Full Text PDF

-Cresol is a harmful phenolic substance that can cause serious effects on human health even at a low concentration in water. Therefore, the detection of -cresol in a water environment is particularly important. In this paper, a novel zeolite imidazolate framework-67 (ZIF-67) material with regular morphology was prepared on the surface of graphene oxide doped with silver nanoparticles.

View Article and Find Full Text PDF

Hg is one of the most toxic chemical species in the water environment, and thus developing a new fluorescent covalent organic framework for both the detection and removal of Hg is highly desirable. Herein, a fluorescent composite, termed TpPa-1 COF@CDs, was synthesized by inverse emulsion polymerization method using an imine covalent organic framework as the supporting material and carbon dots as the fluorescent sensor element. The crystallinity, porosity, rich functional receptors (hydroxyl and amino groups), thermal stability and fluorescent properties of TpPa-1 COF@CDs were characterized.

View Article and Find Full Text PDF

We developed a novel, convenient and low-cost one-pot strategy for preparing a zeolitic imidazolate framework-8 (ZIF-8)-silica hybrid monolithic column by adding ZIF-8 directly to a polymer solution of the silica matrix. The simulated stationary phase and monolithic column prepared under optimal conditions were characterized using X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis nitrogen physisorption and zeta potential. The results obtained confirmed the successful introduction of ZIF-8 into the silica monolithic column, and the prepared monolithic column exhibited good permeability and physicochemical stability.

View Article and Find Full Text PDF

In this study, three types of chiral fluorescent zirconium-based metal-organic framework materials were synthesized using l-dibenzoyl tartaric acid as the chiral modifier by the solvent-assisted ligand incorporation method, which was the porous coordination network yellow material, denoted as PCN-128Y. PCN-128Y-1 and PCN-128Y-2 featured unique chiral selectivity for the Gln enantiomers amongst seven acids and the highly stable luminescence property, which were caused by the heterochiral interaction and aggregation-induced emission. Furthermore, a rapid fluorescence method for the chiral detection of glutamine (Gln) enantiomers was developed.

View Article and Find Full Text PDF

A new kind of chiral zirconium based metal-organic framework, l-Cys-PCN-222, was synthesized using l-cysteine (l-Cys) as a chiral modifier by a solvent-assisted ligand incorporation approach and utilized as the chiral stationary phase in the capillary electrochromatography system. l-Cys-PCN-222 was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential and so on. The results revealed that l-Cys-PCN-222 had the advantages of good crystallinity, high specific surface area (1818 m g), thermal stability and chiral recognition performance.

View Article and Find Full Text PDF

Dendritic fiber-type silica (KCC-1) has attracted the attention of researchers because of its unique three-dimensional radial structure and high specific surface area. Its highly modified surface allows it to be used in catalysis, adsorption, biomedicine, and other fields. Nano-precious metals (NPs) have several excellent chemical properties, but their stability limits their applications.

View Article and Find Full Text PDF

A novel chiral stationary phase (CSP) of Zr-based metal-organic framework, l-Cys-PCN-224, was prepared by one-pot method and applied for the enantioseparation by capillary electrochromatography. The CSP was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential, and so on. The results revealed that the CSP had good crystallinity, high specific surface area (2580 m /g), and good thermal stability.

View Article and Find Full Text PDF

In this paper, polyvinylpyrrolidone-templated copper nanoclusters (PVP-CuNCs) were synthesised using a hydrothermal method. Through the electrostatic interaction between PVP-CuNCs and rhodamine 6G, a dual-emission ratiometric fluorescent probe was constructed, and two well-separated emission peaks appeared at 420 nm and 570 nm. The selective detection of rutin and picric acid was achieved by fitting the relationship between the ratiometric fluorescence intensity (F/F) and the concentration of the target detection substance.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have been recognized as promising solid phases in capillary electrochromatography (CEC). Imine-based COF-coated open-tubular CEC column (COF TpBD-coated OT column) was prepared and characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), nitrogen adsorption/desorption (Brunauer-Emmett-Teller [BET]), and scanning electron microscopy (SEM). The results showed that the column efficiency was up to 26,776 plate/m, and the thickness of stationary phase was about 6.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully created an artificial cytosol cell model using an electroformation method, focusing on agarose mixed with sucrose to mimic natural cytosol properties.
  • The viscosity of the agarose-sucrose mixture was optimized to closely resemble that of real cell cytosol, enhancing its functionality.
  • Tests demonstrated that these vesicles could effectively carry drugs, as evidenced by a significant increase in the cancer-fighting efficiency of doxorubicin when encapsulated in the artificial cytosol compared to its free form.
View Article and Find Full Text PDF

Luminescent Ln-MOFs (EuTb-MOF) were successfully synthesised through the solvothermal reaction of Tb(NO)·6HO, Eu(NO)·6HO, and the ligand pyromellitic acid. The product was characterised by X-ray diffraction (XRD), TG analysis, EM, X-ray photoelectron spectroscopy (XPS), and luminescence properties, and results show that the synthesised material EuTb-MOF has a selective ratio-based fluorescence response to Fe or CrO. On the basis of the internal filtering effect, the fluorescence detection experiment shows that as the concentration of Fe or CrO increases, the intensity of the characteristic emission peak at 544 nm of Tb decreases, and the intensity of the characteristic emission peak at 653 nm of Eu increases in EuTb-MOF.

View Article and Find Full Text PDF

Quantum dots (QDs) and carbon quantum dots (CDs) are classes of zero-dimensional materials whose sizes can be ≤10 nm. They exhibit excellent optical properties and are widely used to prepare fluorescent probes for qualitative and quantitative detection of test objects. In this article, we used cerium chloride as the cerium source and used the in situ doped cerium (rare-earth element) to develop cadmium telluride (CdTe) quantum dots following the aqueous phase method.

View Article and Find Full Text PDF

Objective: KN motif and ankyrin repeat domains 2 (KANK2) may inhibit the activation of (NF-kappaB) p65, which plays a role in myocardial injury. Thus, our study aims to discover the effect of KANK2 on myocardial infarction (MI) induced by ligating the left anterior descending coronary artery (LAD) through regulating NF-κB p65 in vivo.

Methods: MI rats underwent LAD ligation were administered with intramyocardial injections of KANK2/Control activation plasmids.

View Article and Find Full Text PDF

Quantum dots (QDs) are a class of zero-dimensional nanocrystal materials, whose lengths are limited to 2-10 nm. Their unique advantages such as wide excitation spectra, narrow emission spectra, and high quantum yield make their application possible in fluorescence sensing, wherein QDs such as CdSe, CdTe, and CdS are used. Indeed, QDs have a wide range of applications in fluorescence sensing, and there have been many reports of applications based on QDs as ion probes.

View Article and Find Full Text PDF

In this work, coumarin derivatives (C) are used to enhance the fluorescence of graphene quantum dots (GQDs) by covalently linking the carboxyl groups on the edge of the GQD sheet. The as-synthesized coumarin-modified graphene quantum dots (C-GQDs) have a uniform particle size with an average diameter of 3.6 nm.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA LINC01139 (LINC01139) in the progression of hepatocellular carcinoma (HCC). We found that LINC01139 was over-expressed in HCC specimens and cell lines, and its upregulation was observed to be associated with advanced TNM stage, lymph node metastasis and poor clinical prognosis of HCC patients.

View Article and Find Full Text PDF