Publications by authors named "Chu Fang Lo"

Shrimp acute hepatopancreatic necrosis disease (AHPND) is one of the most devastating diseases to impact the global shrimp farming industry, with a mortality rate of 70 %-100 %. The key virulence factors are a pair of Photorhabdus insect-related (Pir)-like toxins, PirA and PirB. In this study, by using an in vitro transcription and translation assay, we first confirmed that the quorum sensing transcriptional regulator AphB could trigger the expression of its downstream genes after binding to the AphB binding sequence in the promoter region of the pirA/pirB operon.

View Article and Find Full Text PDF
Article Synopsis
  • WSSV is a large double-stranded DNA virus, traditionally described as having an ellipsoidal shape with a tail-like extension, but recent studies suggest it actually has a stout oval shape without these extensions.
  • Using advanced microscopy techniques, researchers identified distinct structural features of the virus, such as a portal cap and closed base, and proposed a unique 14-fold symmetric structure for the nucleocapsid components.
  • These findings led to the development of a new understanding of how WSSV morphs and evolves, including unexpected behaviors like helical dissociation during its lifecycle.
View Article and Find Full Text PDF

Acute hepatopancreatic necrosis disease (AHPND) in shrimp is caused by strains that harbor a pVA1-like plasmid containing the and genes. It is also known that the production of the PirA and PirB proteins, which are the key factors that drive the observed symptoms of AHPND, can be influenced by environmental conditions and that this leads to changes in the virulence of the bacteria. However, to our knowledge, the mechanisms involved in regulating the expression of the / genes have not previously been investigated.

View Article and Find Full Text PDF

Viral glycoproteins are expressed by many viruses, and during infection they usually play very important roles, such as receptor attachment or membrane fusion. The mature virion of the white spot syndrome virus (WSSV) is unusual in that it contains no glycosylated proteins, and there are currently no reports of any glycosylation mechanisms in the pathogenesis of this virus. In this study, we cloned a glycosylase, mannosyl-glycoprotein endo-β-N-acetylglucosaminidase (ENGase, EC 3.

View Article and Find Full Text PDF

Acute hepatopancreatic necrosis disease (AHPND) is a recently emerged disease in aqua cultured shrimp that is caused by virulent strains of Vibrio parahaemolyticus (VP). Our previous study used transcriptomics to identify key pathogenic factors in the stomach of AHPND-infected shrimp (Litopenaeus vannamei), and here we used a different subset of the same data to construct a gene-to-gene expression correlation network to identify immune-responsive genes. LvSerpin7 was found to have the highest number of correlations after infection, and it also showed a significant increase in mRNA expression.

View Article and Find Full Text PDF

Using two advanced sequencing approaches, Illumina and PacBio, we derive the entire Dscam gene from an M2 assembly of the complete Penaeus monodon genome. The P. monodon Dscam (PmDscam) gene is ~266 kbp, with a total of 44 exons, 5 of which are subject to alternative splicing.

View Article and Find Full Text PDF

Acute hepatopancreas necrosis disease is a recently emerged shrimp disease that is caused by virulent strains of Vibrio parahaemolyticus. Although AHPND poses a serious threat to the shrimp industry, particularly in Asia, its underlying pathogenic mechanisms are not well characterized. Since a previous transcriptomic study showed upregulation of the apical sodium bile acid transporter (LvASBT), our objective here was to explore the role of bile acids and bile acid transporters in AHPND infection.

View Article and Find Full Text PDF

The viral responsive protein 15 from the black tiger shrimp Penaeus monodon (PmVRP15) is a highly responsive gene upon white spot syndrome virus (WSSV) challenge. It is identified from hemocyte and important for WSSV trafficking and assembly. However, the knowledge of PmVRP15 gene regulation is limited.

View Article and Find Full Text PDF
Article Synopsis
  • Acute hepatopancreatic necrosis disease (AHPND) in penaeid shrimp leads to high mortality rates and significant economic losses, triggered by specific strains of bacteria that express harmful toxins.
  • These toxins, PirA and PirB, form a complex that damages shrimp cells, but their binding mechanism is not fully understood.
  • The study utilized various techniques like isothermal titration calorimetry and mass spectrometry to explore the interaction between PirA and PirB, resulting in a proposed model that could aid in developing strategies to combat AHPND.
View Article and Find Full Text PDF

An emerging bacterial disease, acute hepatopancreatic necrosis disease (AHPND), is caused by strains of Vibrio parahaemolyticus with an additional AHPND-associated plasmid pVA1 encoding a virulent toxin (Pir ) that damages the shrimp's hepatopancreas. Like other species of Vibrio, these virulent strains initially colonise the shrimp's stomach, but it is not yet understood how the bacteria or toxins are subsequently able to cross the epithelial barrier and reach the hepatopancreas. Here, by using transcriptomics and system biology methods, we investigate AHPND-induced changes in the stomach of AHPND-causing V.

View Article and Find Full Text PDF

We report here the genome sequence of strain M1-1, which causes a mild form of shrimp acute hepatopancreatic necrosis disease (AHPND). Compared to other virulent strains, the M1-1 genome appeared to express several additional genes, while some genes were missing. These instabilities may be related to the reduced virulence of M1-1.

View Article and Find Full Text PDF

Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from during white spot syndrome virus (WSSV) infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp.

View Article and Find Full Text PDF

In this letter, we treat a rod-shaped virus as a free homogenous nanorod and identify its confined acoustic vibration modes that can cause strong resonant microwave absorption through electric dipolar excitation with a core-shell charge distribution. They are found to be the n = 4N-2 modes of the longitudinal modes of the nanorods, where N is an integer starting from 1 and n is the mode order quantum number. This study was confirmed by measuring the microwave absorption spectra of white spot syndrome virus (WSSV), which is a rod-shaped virus.

View Article and Find Full Text PDF

The shrimp multifunctional protein alpha-2-macroglobulin (A2M) is abundantly expressed in plasma, highly up-regulated upon microbial infection and involved in several immune pathways such as blood clotting system, phagocytosis and melanization. Herein, the function of LvA2M from Litopenaeus vannamei on the prophenoloxidase (proPO) system is reported. The recombinant (r)LvA2M produced strongly and specifically inhibited trypsin and the PO activity in shrimp plasma in a dose-dependent manner.

View Article and Find Full Text PDF

Levels of intracellular ROS (reactive oxygen species) were significantly increased in hemocytes collected from WSSV-infected shrimp within the first 30-120 min after infection. Measurement of the NADPH/NADP(+) and GSH/GSSG ratios revealed that after a significant imbalance toward the oxidized forms at 2 hpi, redox equilibrium was subsequently restored. Meanwhile, high levels of lactic acid production, elevated NADH/NAD(+) ratios, and metabolic changes in the glycolysis pathway show that the Warburg effect was triggered by the virus.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV, genus Whispovirus, family Nimaviridae) is causing huge economic losses in global shrimp farming, but there is no effective control. Shrimp cell laminin receptor (Lamr) may have a role in WSSV infection. The objective was to characterize interactions between Penaeus monodon Lamr (PmLamr) and WSSV structural proteins.

View Article and Find Full Text PDF

Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M.

View Article and Find Full Text PDF

Viral responsive protein 15 (PmVRP15) has been identified as a highly up-regulated gene in the hemocyte of white spot syndrome virus (WSSV)-infected shrimp Penaeus monodon. However, the function of PmVRP15 in host-viral interaction was still unclear. To elucidate PmVRP15 function, the interacting partner of PmVRP15 from WSSV was screened by yeast two-hybrid assay and then confirmed by co-immunoprecipitation (Co-IP).

View Article and Find Full Text PDF

Type I interferon (IFN) is one of most important cytokines for antiviral responses in fish innate immunity, after the induction pathway following pattern recognition. In this study, 2 types of type I IFN mRNA from a medaka (Japanese rice fish; Oryzias latipes) were identified and classified (phylogenetic analysis) into subgroup-a and -d by (designated olIFNa and olIFNd, respectively). Both olIFNa and olIFNd (encoding 197 and 187 amino acid residues, respectively) contained 2 cysteines.

View Article and Find Full Text PDF

Although myostatin, a suppressor of skeletal muscle development and growth, has been well studied in mammals, its function in fish remains unclear. In this study, we used a popular genome editing tool with high efficiency and target specificity (TALENs; transcription activator-like effector nucleases) to mutate the genome sequence of myostatin (MSTN) in medaka (Oryzias latipes). After the TALEN pair targeting OlMyostatin was injected into fertilized medaka eggs, mutant G0 fish carrying different TALENs-induced frameshifts in the OlMSTN coding sequence were mated together in order to transmit the mutant sequences to the F1 generation.

View Article and Find Full Text PDF

Acute hepatopancreatic necrosis disease (AHPND), also called early mortality syndrome (EMS), is a recently emergent shrimp bacterial disease that has resulted in substantial economic losses since 2009. AHPND is known to be caused by strains of Vibrio parahaemolyticus that contain a unique virulence plasmid, but the pathology of the disease is still unclear. In this study, we show that AHPND-causing strains of V.

View Article and Find Full Text PDF

Shrimp white spot disease (WSD), which is caused by white spot syndrome virus (WSSV), is one of the world's most serious shrimp diseases. Our objective in this study was to use an immunomagnetic reduction (IMR) assay to develop a highly sensitive, automatic WSSV detection platform targeted against ICP11 (the most highly expressed WSSV protein). After characterizing the magnetic reagents (Fe3O4 magnetic nanoparticles coated with anti ICP11), the detection limit for ICP11 protein using IMR was approximately 2 x 10(-3) ng/ml, and the linear dynamic range of the assay was 0.

View Article and Find Full Text PDF
Article Synopsis
  • Acute hepatopancreatic necrosis disease (AHPND) is a serious disease affecting penaeid shrimp, primarily caused by the bacterium Vibrio parahaemolyticus, leading to significant losses in shrimp farming.
  • Researchers discovered that a specific plasmid (pVA1) in the bacteria is crucial for its disease-causing ability, particularly the presence of genes for toxins known as PirA and PirB.
  • The study also revealed that the structure of these toxins is similar to other insecticidal proteins, suggesting that they may function similarly by creating pores in cell membranes, and that the genes for these toxins can be transferred between bacteria.
View Article and Find Full Text PDF