Purpose: The genesis of all cancers results from an accumulation of mutations, constitutional and/or acquired when induced by external mutagenic factors. High-speed technologies for genome sequencing have completely changed the study of disease genetics, but with limited knowledge of the functional value of most genetic changes.
Experimental Design: Here, we proposed an innovative individual approach by studying tissue samples from a young woman with an unusual association of breast cancer, polycythemia vera, and rheumatoid arthritis.
Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP cdh5). Control (TXNIP) and TXNIP cdh5 mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
March 2008
Transepithelial alveolar sodium (Na+) transport mediated by the amiloride-sensitive epithelial sodium channel (ENaC) constitutes the driving force for removal of fluid from the alveolar space. To define the role of the beta-ENaC subunit in vivo in the mature lung, we studied a previously established mouse strain harboring a disruption of the beta-ENaC gene locus resulting in low levels of beta-ENaC mRNA expression. Real-time RT-PCR experiments confirmed that beta-ENaC mRNA levels were decreased by >90% in alveolar epithelial cells from homozygous mutant (m/m) mice.
View Article and Find Full Text PDFTransepithelial sodium transport via alveolar epithelial Na(+) channels and Na(+),K(+)-ATPase constitutes the driving force for removal of alveolar oedema fluid. Decreased activity of the amiloride-sensitive epithelial Na(+) channel (ENaC) in the apical membrane of alveolar epithelial cells impairs sodium-driven alveolar fluid clearance (AFC) and predisposes to pulmonary oedema. We hypothesized that hyperactivity of ENaC in the distal lung could improve AFC and facilitate the resolution of pulmonary oedema.
View Article and Find Full Text PDFalpha- and beta-spectrins are components of molecular scaffolds located under the lipid bilayer and named membrane skeletons. Disruption of these scaffolds through mutations in spectrins demonstrated that they are involved in the membrane localization or the maintenance of proteins associated with them. The ubiquitous alphaII-spectrin chain bears in its central region a unique domain that is sensitive to several proteases such as calpains or caspases.
View Article and Find Full Text PDFEndolymph, a high K(+)/low Na(+) fluid, participates in mechanoelectrical transduction in inner ear. Molecular mechanisms controlling endolymph ion homeostasis remain elusive, hampered by the lack of appropriate cellular models. We established an inner ear cell line by targeted oncogenesis.
View Article and Find Full Text PDF