Publications by authors named "Chrystelle M Rasamison"

A series of potent carboxylic acid DGAT1 inhibitors with high permeability were developed from a virtual screening hit. Strategies were employed to reduce Pgp substrate recognition and increase passive permeability, resulting in the discovery of a series showing good inhibition of cellular triglyceride synthesis. The mutagenic potential of prospective metabolites was evaluated in the Ames assay, and one aniline was shown to be devoid of mutagenicity.

View Article and Find Full Text PDF

Allosteric activators of the glucose-sensing enzyme glucokinase (GK) are currently attracting much interest as potential antidiabetic therapies because they can achieve powerful blood glucose lowering through actions in multiple organs. Here, the optimization of a weakly active high-throughput screening hit to (2 R)-2-(4-cyclopropanesulfonylphenyl)- N-(5-fluorothiazol-2-yl)-3-(tetrahydropyran-4-yl)propionamide (PSN-GK1), a potent GK activator with an improved pharmacokinetic and safety profile, is described. Following oral administration, this compound elicited robust glucose lowering in rats.

View Article and Find Full Text PDF

The endogenous lipid signaling agent oleoylethanolamide (OEA) has recently been described as a peripherally acting agent that reduces food intake and body weight gain in rat feeding models. This paper presents evidence that OEA is an endogenous ligand of the orphan receptor GPR119, a G protein-coupled receptor (GPCR) expressed predominantly in the human and rodent pancreas and gastrointestinal tract and also in rodent brain, suggesting that the reported effects of OEA on food intake may be mediated, at least in part, via the GPR119 receptor. Furthermore, we have used the recombinant receptor to discover novel selective small-molecule GPR119 agonists, typified by PSN632408, which suppress food intake in rats and reduce body weight gain and white adipose tissue deposition upon subchronic oral administration to high-fat-fed rats.

View Article and Find Full Text PDF

The synthesis, SAR and biological evaluation of a series of ureas that activate glucokinase, a target for diabetes therapy as a result of its critical role in the regulation of whole-body glucose homeostasis, are described. Some of the urea-containing glucokinase activators lowered blood glucose levels in vivo following oral dosing to C57BL/6J mice.

View Article and Find Full Text PDF