A growth factor may have different actions depending on developmental stage. We investigated this phenomenon in the interactions of fibroblast growth factor 2 (FGF2) and neurotrophins on cochlear ganglion (CG) development. The portions of the otocyst fated to form the CG and cochlear epithelium were cocultured at embryonic day 11 (E11).
View Article and Find Full Text PDFIn adult mammals a single exposure to loud noise can damage cochlear hair cells and initiate subsequent episodes of degeneration of axonal endings in the cochlear nucleus (CN). Possible mechanisms are loss of trophic support and/or excitotoxicity. Fibroblast growth factor 2 (FGF2), important for development, might be involved in either mechanism.
View Article and Find Full Text PDFNeurotrophins and FGF2 contribute to formation of the cochlea, but their roles in cochlear nucleus development are unknown. The effects of these factors may differ in the cochlea and cochlear nucleus, which may influence each other's development. It is important to analyze the effects of these factors on cellular structures at well-defined steps in the normal morphogenetic sequence.
View Article and Find Full Text PDFIn neural cells, such as oligodendrocytes and neurons, transport of certain RNAs along microtubules is mediated by the cis-acting heterogeneous nuclear ribonucleoprotein A2 response element (A2RE) trafficking element and the cognate trans-acting heterogeneous nuclear ribonucleoprotein (hnRNP) A2 trafficking factor. Using a yeast two-hybrid screen, we have identified a microtubule-associated protein, tumor overexpressed gene (TOG)2, as an hnRNP A2 binding partner. The C-terminal third of TOG2 is sufficient for hnRNP A2 binding.
View Article and Find Full Text PDF