Non-linear microscopy is a powerful imaging tool to examine structural properties and subcellular processes of various biological samples. The competence of Third Harmonic Generation (THG) includes the label free imaging with diffraction-limited resolution and three-dimensional visualization with negligible phototoxicity effects. In this study, THG records and quantifies the lipid content of Drosophila haemocytes, upon encountering normal or tumorigenic neural cells, in correlation with their shape or their state.
View Article and Find Full Text PDFTumors constantly interact with their microenvironment. Here, we present data on a Notch-induced neural stem cell (NSC) tumor in Drosophila, which can be immortalized by serial transplantation in adult hosts. This tumor arises in the larva by virtue of the ability of Notch to suppress early differentiation-promoting factors in NSC progeny.
View Article and Find Full Text PDFBackground: Neural stem cells (NSC) in divide asymmetrically to generate one cell that retains stem cell identity and another that is routed to differentiation. Prolonged mitotic activity of the NSCs gives rise to the plethora of neurons and glial cells that wire the brain and nerve cord. Genetic insults, such as excess of Notch signaling, perturb the normal NSC proliferation programs and trigger the formation of NSC hyperplasias, which can subsequently progress to malignancies.
View Article and Find Full Text PDFNeural stem cells divide during embryogenesis and juvenile life to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that, in every asymmetric cell division, progenitors send a Delta-Notch signal to their sibling stem cells. Here, we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the larval central nervous system, which can progress to malignant tumours after allografting to adult hosts.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2017
Mass spectrometry-based quantitative proteomics specifically applied to comprehend the pathogenesis of lymphoma has incremental value in deciphering the heterogeneity in complex deregulated molecular mechanisms/pathways of the lymphoma entities, implementing the current diagnostic and therapeutic strategies. Essential global, targeted and functional differential proteomics analyses although still evolving, have been successfully implemented to shed light on lymphoma pathogenesis to discover and explore the role of potential lymphoma biomarkers and drug targets. This review aims to outline and appraise the present status of MS-based quantitative proteomic approaches in lymphoma research, introducing the current state-of-the-art MS-based proteomic technologies, the opportunities they offer in biological discovery in human lymphomas and the related limitation issues arising from sample preparation to data evaluation.
View Article and Find Full Text PDF