Publications by authors named "Christy Y Hui"

Protein biomarkers often exist as degradation fragments in biological samples, and affinity agents derived using a purified protein may not recognize them, limiting their value for clinical diagnosis. Herein, we present a method to overcome this issue, by selecting aptamers against a degraded form of the toxin B protein, which is a marker for diagnosing toxigenic Clostridium difficile infections. This approach has led to isolation of a DNA aptamer that recognizes degraded toxin B, fresh toxin B, and toxin B spiked into human stool samples.

View Article and Find Full Text PDF

We report a paper-based aptasensor platform that uses two reaction zones and a connecting bridge along with printed multifunctional bio/nano materials to achieve molecular recognition and signal amplification. Upon addition of analyte to the first zone, a fluorescently labelled DNA or RNA aptamer is desorbed from printed graphene oxide, rapidly producing an initial fluorescence signal. The released aptamer then flows to the second zone where it reacts with printed reagents to initiate rolling circle amplification, generating DNA amplicons containing a peroxidase-mimicking DNAzyme, which produces a colorimetric readout that can be read in an equipment-free manner or with a smartphone.

View Article and Find Full Text PDF

We report on a paper device capable of carrying out target-induced rolling circle amplification (RCA) to produce massive DNA amplicons that can be easily visualized. Interestingly, we observed that RCA was more proficient on paper than in solution, which we attribute to a significantly higher localized concentration of immobilized DNA. Furthermore, we have successfully engineered a fully functional paper device for sensitive DNA or microRNA detection via printing of all RCA-enabling molecules within a polymeric sugar film formed from pullulan, which was integrated with the paper device.

View Article and Find Full Text PDF