Continued improvements in the ballistic properties of military munitions have led to metal formulations for which little are known about the long-term health effects. Previously we have shown that a military-grade tungsten alloy comprised of tungsten, nickel, and cobalt, when embedded into the leg muscle of F344 rats to simulate a fragment wound, induces highly aggressive metastatic rhabdomyosarcomas. An important follow-up when assessing a compound's carcinogenic potential is to test it in a second rodent species.
View Article and Find Full Text PDFThe terrorist use of a radiological dispersal device (RDD) has been described as "not if, but when" (). Exposures from such an event could occur by a number of routes including inhalation, wound contamination, or embedded fragments. Several of the radionuclides thought to be potential RDD components are metals or ceramic material.
View Article and Find Full Text PDFNovel metal formulations are being used with increasing frequency on the modern battlefield. In many cases the health effects of these materials are not known, especially when they are embedded as fragments. Imaging techniques, although useful for determining location, provide no information regarding the composition of embedded fragments.
View Article and Find Full Text PDFContinuing concern regarding the potential health and environmental effects of depleted uranium and lead has resulted in many countries adding tungsten alloy (WA)-based munitions to their battlefield arsenals as replacements for these metals. Because the alloys used in many munitions are relatively recent additions to the list of militarily relevant metals, very little is known about the health effects of these metals after internalization as embedded shrapnel. Previous work in this laboratory developed a rodent model system that mimicked shrapnel loads seen in wounded personnel from the 1991 Persian Gulf War.
View Article and Find Full Text PDFThe health effects of embedded fragments of depleted uranium (DU) are being investigated to determine whether current surgical fragment-removal policies are appropriate for this metal. The authors studied rodents implanted with DU pellets as well as cultured human cells exposed to DU compounds. Results indicate that uranium from implanted DU fragments distributes to tissues distant from implantation sites, including bone, kidney, muscle, and liver.
View Article and Find Full Text PDF