Synthetic 3D object models have been proven crucial in object pose estimation, as they are utilized to generate a huge number of accurately annotated data. The object pose estimation problem is usually solved for images originating from the real data domain by employing synthetic images for training data enrichment, without fully exploiting the fact that synthetic and real images may have different data distributions. In this work, we argue that 3D object pose estimation problem is easier to solve for images originating from the synthetic domain, rather than the real data domain.
View Article and Find Full Text PDF