Publications by authors named "Christos Panagiotidis"

OXER1, the receptor for the arachidonic acid metabolite 5-οxo-eicosatetraenoic acid (5-oxo-ETE), has been reported to also bind and mediate the membrane-initiated actions of androgens. Indeed, androgens antagonize the 5-oxo-ETE effects through OXER1, affecting a number of signaling pathways and inhibiting cancer cell proliferation and migration. OXER1, being a GPCR, was classically described to be localized in the plasma membrane.

View Article and Find Full Text PDF

Nuclear translocation of large proteins is mediated through karyopherins, carrier proteins recognizing specific motifs of cargo proteins, known as nuclear localization signals (NLS). However, only few NLS signals have been reported until now. In the present work, NLS signals for Importins 4 and 5 were identified through an unsupervised approach, followed by experimental validation.

View Article and Find Full Text PDF

Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells.

View Article and Find Full Text PDF

Background: Nuclear translocation of large proteins is mediated through specific protein carriers, collectively named karyopherins (importins, exportins and adaptor proteins). Cargo proteins are recognized by importins through specific motifs, known as nuclear localization signals (NLS). However, only the NLS recognized by importin α and transportin (M9 NLS) have been identified so far METHODS: An unsupervised in silico approach was used, followed by experimental validation.

View Article and Find Full Text PDF

Essential oils are complex mixtures of strongly active compounds, very volatile and sensitive to light, oxygen, moisture and temperature. Loading inside nanocarriers can be a strategy to increase their stability and successfully use them in therapy. In the present study, a commercial L.

View Article and Find Full Text PDF

Flexibility of tris-oligonucleotides is determined by the length of their connecting hydrocarbon chains. Tris-oligonucleotides are branched DNA building blocks with three oligonucleotide arms attached to a C3h -symmetrical linker core at these chains. Four tris-oligonucleotides hybridise into a tetrahedral nanocage by sequence-determined self-assembly.

View Article and Find Full Text PDF

Transmissible spongiform encephalopathies are neurodegenerative diseases, which despite fervent research remain incurable. Immunization approaches have shown great potential at providing protection, however tolerance effects hamper active immunization protocols. In this study we evaluated the antigenic potential of various forms of recombinant murine prion protein and estimated their protective efficacy in a mouse model of prion diseases.

View Article and Find Full Text PDF

Molecular chaperones or heat-shock proteins (HSPs) are protein machines that interact with unfolded or partially folded polypeptides and assist them in attaining their proper conformation. The folding reaction relies on a complex array of scaffolding effects and ATP-driven conformational changes that mediate the temporary unfolding and subsequent refolding of protein substrates. DnaK and GroEL are the two major Escherichia coli chaperones.

View Article and Find Full Text PDF

The Escherichia coli AtoSC two component system;upon acetoacetate induction;regulates the expression of the atoDAEB operon;through His→Asp phopshotransfer;thus modulating important cellular processes. In this report the effect of seven 5,7,8-trimethyl-1,4-benzoxazine derivatives on the regulation of the E. coli AtoSC system was studied.

View Article and Find Full Text PDF

Background: Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of E. coli activates the expression of atoDAEB operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction.

View Article and Find Full Text PDF

The herpes simplex virus (HSV) ICP0 protein acts to overcome intrinsic cellular defenses that repress viral alpha gene expression. In that vein, viruses that have mutations in ICP0's RING finger or are deleted for the gene are sensitive to interferon, as they fail to direct degradation of promyelocytic leukemia protein (PML), a component of host nuclear domain 10s. While varicella-zoster virus is also insensitive to interferon, ORF61p, its ICP0 ortholog, failed to degrade PML.

View Article and Find Full Text PDF

The enteric bacterium Escherichia coli is the most extensively used prokaryotic organism for production of proteins of therapeutic or commercial interest. However, it is common that heterologous over-expressed recombinant proteins fail to properly fold resulting in formation of insoluble aggregates known as inclusion bodies. Complex systems have been developed that employ simultaneous over-expression of chaperone proteins to aid proper folding and solubility during bacterial expression.

View Article and Find Full Text PDF

The Escherichia coli AtoS-AtoC two-component signal transduction system regulates the expression of the atoDAEB operon genes, whose products are required for short-chain fatty acid catabolism. In this study purified his-tagged wild-type and mutant AtoS proteins were used to prove that these proteins are true sensor kinases. The phosphorylated residue was identified as the histidine-398, which was located in a conserved Eta-box since AtoS carrying a mutation at this site failed to phosphorylate.

View Article and Find Full Text PDF

The high-mobility group protein A1 (HMGA1), which regulates mammalian gene expression by altering chromatin architecture, was found to bind at multiple sites within the promoter regions of all of the herpes simplex virus type 1 (HSV-1) immediate early genes, as well as a representative early (tk) gene and one late (gC) gene, both in vitro and in vivo. Infected cell polypeptide (ICP) 4, the major HSV-1 regulatory protein, binds these promoters both in vitro and in vivo, and HMGA1 enhances its in vitro binding. In transient expression experiments, HMGA1 modified the effects of both ICP4 and ICP0, another virus transactivator, on virus gene expression in a promoter-specific manner, but it had no effect on the transactivation of immediate-early promoters by VP16.

View Article and Find Full Text PDF

AtoC has a dual function as both an antizyme, the posttranslational inhibitor of polyamine biosynthetic enzymes, and the transcriptional regulator of genes involved in short-chain fatty acid catabolism (the atoDAEB operon). We have previously shown that AtoC is the response regulator of the AtoS-AtoC two-component signal transduction system that activates atoDAEB when Escherichia coli is exposed to acetoacetate. Here, we show that the same cis elements control both promoter inducibility and AtoC binding.

View Article and Find Full Text PDF

Recent analysis revealed that, in Escherichia coli the AtoS-AtoC/Az two-component system (TCS) and its target atoDAEB operon regulate the biosynthesis of short-chain poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles, upon acetoacetate-mediated induction. We report here that spermidine further enhanced this effect, in E. coli that overproduces both components of the AtoS-AtoC/Az TCS, without altering their protein levels.

View Article and Find Full Text PDF

Background: In bacteria, the biosynthesis of polyamines is modulated at the level of transcription as well as post-translationally. Antizyme (Az) has long been identified as a non-competitive protein inhibitor of polyamine biosynthesis in E. coli.

View Article and Find Full Text PDF

The AtoS-AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E.

View Article and Find Full Text PDF

Antizyme, long known to be a non-competitive inhibitor of ornithine decarboxylase, is encoded by the atoC gene in Escherichia coli. The present study reveals another role for AtoC, that of a response regulator of the AtoS-AtoC two component system regulating the expression of the atoDAEB operon upon acetoacetate induction. This operon encodes enzymes involved in short-chain fatty acid catabolism in E.

View Article and Find Full Text PDF