Publications by authors named "Christos G Takoudis"

To improve surface properties of poly(methyl methacrylate) (PMMA) using nano-ceramic coatings and assess microbial adherence after long-term use of a chemical cleanser. Thirty-six PMMA samples were fabricated, polished and coated with a nano-thin TiO or mixed TiO /ZrO , with uncoated samples as controls. Six samples in each group (n = 12) were soaked in Polident denture cleaner 180 times for 30 min, while six were soaked in deionized water.

View Article and Find Full Text PDF

Due to the COVID19 outbreak, there has been increasing interest in tailoring, modifying and improving conventional personal protective equipment to increase their service life and make them more effective against viruses and bacteria. Here, atomic layer deposition (ALD) was used to functionalize the filter of N95 mask with nano-islands of silver. X-ray photoelectron spectroscopy and x-ray absorption fine structure were used for ALD silver characterization; microbiological assay was conducted to study the effectiveness of the deposited silver against the air-borne pathogen ).

View Article and Find Full Text PDF

Atomic layer deposition (ALD) is a vapor-phase deposition technique that has attracted increasing attention from both experimentalists and theoreticians in the last few decades. ALD is well-known to produce conformal, uniform, and pinhole-free thin films across the surface of substrates. Due to these advantages, ALD has found many engineering and biomedical applications.

View Article and Find Full Text PDF

Surface functionalization is an effective approach to improve and enhance the properties of dental materials. A review of atomic layer deposition (ALD) in the field of dental materials is presented. ALD is a well-established thin film deposition technique.

View Article and Find Full Text PDF

In modern biomaterial-based electronics, conductive and flexible biomaterials are gaining increasing attention for their wide range of applications in biomedical and wearable electronics industries. The ecofriendly, biodegradable, and self-resorbable nature of these materials makes them an excellent choice in fabricating green and transient electronics. Surface functionalization of these biomaterials is required to cater to the need of designing electronics based on these substrate materials.

View Article and Find Full Text PDF

Statement Of Problem: Maxillofacial prostheses made of silicone elastomers undergo undesirable color degradation over time. How this color change can be prevented is unclear.

Purpose: The purpose of this in vitro study was to evaluate the ability of an oxide nanocoating to prevent color degradation of maxillofacial silicone elastomers after artificial accelerated aging.

View Article and Find Full Text PDF

Surface modifications of a biomaterial like collagen are crucial in improving the surface properties and thus enhancing the functionality and performance of such a material for a variety of biomedical applications. In this study, a commercially available collagen membrane's surface was functionalized by depositing an ultrathin film of titania or titanium dioxide (TiO) using a room temperature atomic layer deposition (ALD) process. A novel titanium precursor-oxidizer combination was used for this process in a custom-made ALD reactor.

View Article and Find Full Text PDF

Atomic layer deposition (ALD) is a technique increasingly used in nanotechnology and ultrathin film deposition; it is ideal for films in the nanometer and Angstrom length scales. ALD can effectively be used to modify the surface chemistry and functionalization of engineering-related and biologically important surfaces. It can also be used to alter the mechanical, electrical, chemical, and other properties of materials that are increasingly used in biomedical engineering and biological sciences.

View Article and Find Full Text PDF

Modifications of Ti-6Al-4V surface roughness, wettability and composition are increasingly studied to improve cellular viability on biomedical implants involving Ti-6Al-4V. In this study, it is shown that modification of Ti-6Al-4V samples using anodization (for the formation of titania nanotubes) combined with thermal oxidation (TO) results in superior surface characteristics to those of a smooth, rough, anodized-smooth or anodized-rough surface alone. Surface characterization is performed using water contact angle (WCA) measurements, white-light interferometry, Fourier transform infrared spectroscopy (FTIRS), field emission scanning electron microscopy and grazing incidence X-ray diffraction (GIXRD).

View Article and Find Full Text PDF

Surface wettability characteristics of commercially pure titanium (CP-Ti/Ti-II) and titanium Grade 5 alloy (Ti-6Al-4V/Ti-V) with 10nm-thick atomic layer deposited (ALD) TiO2 from Tetrakis DiEthyl Amino Titanium and water vapor were studied in conjunction with cleaning steps before and after the ALD treatment. The wettability characteristics of rough Ti-II and Ti-V samples were investigated after each step, that is, as received, after de-ionized (DI) water rinse followed by N2 drying, sonication in methanol, ALD treatment, and post-ALD DI water rinse. Samples without ALD or cleaning treatments were hydrophobic to variable extents, depending on exposure to different environments, surface impurities, roughness, and aging.

View Article and Find Full Text PDF

We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated.

View Article and Find Full Text PDF

We report the metalorganic chemical vapor deposition of crystalline BiFeO3 films on platinized silicon substrates using n-butylferrocene, triphenylbismuth and oxygen. Based on thermogravimetric analysis data, the suitability of these two precursors for depositing BiFeO3 is discussed. The deposited films were characterized for structure and morphology using X-ray diffraction and scanning electron microscopy.

View Article and Find Full Text PDF

Objectives: Differences in the magnitude of cerebrospinal fluid (CSF) volumetric flow through the cerebral aqueduct between healthy and hydrocephalic patients have been previously reported. However it is not clear whether this is directly related to the pathophysiology or secondary to altered ventricular morphology and hydrodynamics. This work aims to determine the role of anatomic and hydrodynamic factors in modulating the magnitude of CSF flow through the aqueduct.

View Article and Find Full Text PDF

Neurofibromatosis type 2 is an inherited disorder characterized by the development of benign and malignant tumors on the auditory nerves and central nervous system with symptoms including hearing loss, poor balance, skin lesions, and cataracts. Here, we report a novel protein-protein interaction between NF2 protein (merlin or schwannomin) and erythrocyte p55, also designated as MPP1. The p55 is a conserved scaffolding protein with postulated functions in cell shape, hair cell development, and neural patterning of the retina.

View Article and Find Full Text PDF

Direct physical linkage of MAGUKs to the actin cytoskeleton was first established by the interaction of erythrocyte p55 with the FERM domain of protein 4.1R. Subsequently, it was reported that p55 binds to a 51-amino acid peptide, encoded by exon 10, located within the FERM domain of protein 4.

View Article and Find Full Text PDF