Publications by authors named "Christos Cassandras"

This paper studies congestion-aware route-planning policies for intermodal Autonomous Mobility-on-Demand (AMoD) systems, whereby a fleet of autonomous vehicles provides on-demand mobility jointly with public transit under mixed traffic conditions (consisting of AMoD and private vehicles). First, we devise a network flow model to jointly optimize the AMoD routing and rebalancing strategies in a congestion-aware fashion by accounting for the endogenous impact of AMoD flows on travel time. Second, we capture the effect of exogenous traffic stemming from private vehicles adapting to the AMoD flows in a user-centric fashion by leveraging a sequential approach.

View Article and Find Full Text PDF

Background: Given the severity and scope of the current COVID-19 pandemic, it is critical to determine predictive features of COVID-19 mortality and medical resource usage to effectively inform health, risk-based physical distancing, and work accommodation policies. Non-clinical sociodemographic features are important explanatory variables of COVID-19 outcomes, revealing existing disparities in large health care systems.

Methods And Findings: We use nation-wide multicenter data of COVID-19 patients in Brazil to predict mortality and ventilator usage.

View Article and Find Full Text PDF

Background: The rapid global spread of the SARS-CoV-2 virus has provoked a spike in demand for hospital care. Hospital systems across the world have been over-extended, including in Northern Italy, Ecuador, and New York City, and many other systems face similar challenges. As a result, decisions on how to best allocate very limited medical resources and design targeted policies for vulnerable subgroups have come to the forefront.

View Article and Find Full Text PDF

Background: The rapid global spread of the virus SARS-CoV-2 has provoked a spike in demand for hospital care. Hospital systems across the world have been over-extended, including in Northern Italy, Ecuador, and New York City, and many other systems face similar challenges. As a result, decisions on how to best allocate very limited medical resources have come to the forefront.

View Article and Find Full Text PDF

Biomarker discovery involves identifying genetic abnormalities within a tumor. However, one of the main challenges in defining such therapeutic targets is accounting for the molecular heterogeneity of cancer. By integrating somatic mutation and gene expression data from hundreds of heterogeneous cell lines from the Cancer Cell Line Encyclopedia (CCLE), we identify sequences of genetic events that may help explain common patterns of oncogenesis across 22 tumor types, and evaluate the general effect of late-stage mutations on drug sensitivity and resistance mechanisms.

View Article and Find Full Text PDF

At this time, there are no interactive mobile apps designed to increase informed decisions about colorectal cancer screening among women. Colorectal cancer is the third leading cause of cancer death among women. The study's purpose was to explore the usability, acceptability, and satisfaction with a mobile app designed to increase colorectal cancer screening informed decisions among 50- to 64-year-old women.

View Article and Find Full Text PDF

Background: A major problem in identifying the best therapeutic targets for cancer is the molecular heterogeneity of the disease. Cancer is often caused by an accumulation of mutations which produce irreversible damage to the cell's control mechanisms of survival and proliferation. Different mutations may affect these cellular anachronisms through a combination of molecular interactions which may be dynamically changing during cancer progression.

View Article and Find Full Text PDF