The sensory nervous and immune systems work in concert to preserve homeostasis. While this endogenous interplay protects from danger, it may drive chronic pathologies. Currently, genetic engineering of neurons remains the primary approach to interfere selectively with this potentially deleterious interplay.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1-2% of the population aged 65 and over. Additionally, non-motor symptoms such as pain and gastrointestinal dysregulation are also common in PD. These impairments might stem from a dysregulation within the gut-brain axis that alters immunity and the inflammatory state and subsequently drives neurodegeneration.
View Article and Find Full Text PDFPurpose: The occurrence of iatrogenic retinal breaks (RB) in pars plana vitrectomy (PPV) is a complication that compromises the overall efficacy of the surgery. A subset of iatrogenic RB occurs when the retina (rather than the vitreous gel) is cut accidentally by the vitrector. We developed a smart vitrector that can detect in real-time potential iatrogenic RB and activate promptly a PPV machine response to prevent them.
View Article and Find Full Text PDFCell bioprinting technologies aim to fabricate tissuelike constructs by delivering biomaterials layer-by-layer. Bioprinted constructs can reduce the use of animals in drug development and hold promise for addressing the shortage of organs for transplants. Here, we sought to validate the feasibility of bioprinting primary adult sensory neurons using a newly developed laser-assisted cell bioprinting technology, known as Laser-Induced Side Transfer (LIST).
View Article and Find Full Text PDFWe introduced and validated a drop-on-demand method to print cells. The method uses low energy nanosecond laser (wavelength: 532 nm) pulses to generate a transient microbubble at the distal end of a glass microcapillary supplied with bio-ink. Microbubble expansion results in the ejection of a cell-containing micro-jet perpendicular to the irradiation axis, a method we coined Laser Induced Side Transfer (LIST).
View Article and Find Full Text PDFWe introduced and validated a method to miniaturize graded-index (GRIN) fiber-based optical coherence tomography (OCT) probes down to 70 μm in diameter. The probes consist in an assembly of single-mode (SM), coreless (CL), and graded-index (GRIN) fibers. We opted for a probe design enabling controlled size reduction by hydrogen fluoride etching.
View Article and Find Full Text PDFIntracellular delivery of molecular cargo is the basis for a plethora of therapeutic applications, including gene therapy and cancer treatment. A very efficient method to perform intracellular delivery is the photo-activation of nanomaterials that have been previously directed to the cell vicinity and bear releasable molecular cargo. However, potential in vivo applications of this method are limited by our ability to deliver nanomaterials and light in tissue.
View Article and Find Full Text PDFNanoscale bubbles generated around laser-excited metallic nanoparticles are promising candidates for targeted drug and gene delivery in living cells. The development of new nanomaterials for efficient nanobubble-based therapy is however limited by the lack of reliable computational approaches for the prediction of their size and dynamics, due to the wide range of time and space scales involved. In this work, we present a multiscale modeling framework that segregates the various channels of plasmon de-excitation and energy transfer to describe the generation and dynamics of plasmonic nanobubbles.
View Article and Find Full Text PDFMetallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic.
View Article and Find Full Text PDFSelective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting.
View Article and Find Full Text PDFWe report on transient membrane perforation of living cancer cells using plasmonic gold nanoparticles (AuNPs) enhanced single near infrared (NIR) femtosecond (fs) laser pulse. Under optimized laser energy fluence, single pulse treatment (τ = 45 fs, λ = 800 nm) resulted in 77% cell perforation efficiency and 90% cell viability. Using dark field and ultrafast imaging, we demonstrated that the generation of submicron bubbles around the AuNPs is the necessary condition for the cell membrane perforation.
View Article and Find Full Text PDFPlasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact.
View Article and Find Full Text PDFOne of the limits of current electrochemical biosensors is a lack of methods providing stable and highly efficient junctions between biomaterial and solid-state devices. This paper shows how laser-induced forward transfer (LIFT) can enable efficient electron transfer from photosynthetic biomaterial immobilized on screen-printed electrodes (SPE). The ideal pattern, in terms of photocurrent signal of thylakoid droplets giving a stable response signal with a current intensity of approximately 335 ± 13 nA for a thylakoid mass of 28 ± 4 ng, was selected.
View Article and Find Full Text PDFBiosens Bioelectron
December 2010
The detection of DNA hybridization using capacitive readout and a biosensor array of ultrathin Si membranes is presented. The biosensor exploits the ability of the ultrathin membranes to deflect upon surface stress variations caused by biological interactions. Probe DNA molecules are immobilized on the membrane surface and the surface stress variations during hybridization with their complementary strands force the membrane to deflect and effectively change the capacitance between the flexible membrane and the fixed substrate.
View Article and Find Full Text PDF