Publications by authors named "Christos Aneziris"

The influence of TiO addition on the high-temperature electrochemical characteristics of stainless-steel-based materials was investigated by means of differential potential measurement, electrochemical polarization and impedance spectroscopy. A new three-electrode approach was utilized which incorporated a liquid aluminum alloy AlSi7Mg0.3 as the reference electrode, barium carbonate BaCO as the solid-state electrolyte, and stainless steel or a stainless steel-TiO composite as the working electrode.

View Article and Find Full Text PDF

Carbon-bonded alumina refractories offer excellent thermal shock performance but are lacking in terms of mechanical strength. In the present contribution, the influence of the particle packing and the addition of graphene oxide (GO) to carbon-bonded alumina refractories on the physical and mechanical properties before and after thermal shock was investigated. Coarse tabular alumina grains were coated by a GO suspension and used to prepare dry-pressed compacts.

View Article and Find Full Text PDF

Niobium-alumina aggregate fractions with particle sizes up to 3150 µm were produced by crushing pre-synthesised fine-grained composites. Phase separation with niobium enrichment in the aggregate class 45-500 µm was revealed by XRD/Rietveld analysis. To reduce the amount of carbon-based impurities, no organic additives were used for the castable mixtures, which resulted in water demands of approximately 27 vol.

View Article and Find Full Text PDF

Full metal-ceramic composite beads containing different amounts of niobium and alumina, particularly 100 vol% alumina, 100 vol% niobium, and 95/5 vol% niobium/alumina, were produced by the alginate gelation process. The suspension for bead fabrication contained sodium alginate as gelling agent and was added dropwise into a calcium chloride solution to trigger the consolidation process. After debinding in air, sintering of the composite beads was performed under inert atmosphere.

View Article and Find Full Text PDF

The wetting behavior was measured for AlO-C in contact with AlSi7Mg with a conventional sessile drop test (vacuum, 950 °C and 180 min) and a sessile drop test with a capillary purification unit (vacuum, 730 °C and 30 min). The conventional test yielded contact angles of around 92°, whereas the sessile drop measurement with capillary purification showed a strongly non-wetting behavior with a determined apparent contact angle of the rolling drop of 157°. Filtration tests, which were repeated twice, showed that the AlO-C filter possessed a better filtration behavior than the AlO reference filter.

View Article and Find Full Text PDF

The aim of this paper is to prepare nano-functionalized ceramic foam filters from carbon-bonded alumina. The carbon-bonded filters were produced via the Schwartzwalder process using a two-step approach. The prepared ceramic foam filters were further coated using graphene oxide.

View Article and Find Full Text PDF

Mullite reticulated porous ceramics (RPC) are one of the key components for porous media burner, the mechanical properties of mullite RPC decided the service life of the burner. However, the irregularities of cellular structure made it difficult to reveal the fracture behavior of mullite RPCs. In this study, the three-dimensional (3-D) structures of mullite RPCs were analyzed by X-ray computed tomography.

View Article and Find Full Text PDF

The present study provides the mechanical properties of a new generation of refractory composites based on coarse-grained AlO ceramic and the refractory metals Nb and Ta. The materials were manufactured by refractory castable technology and subsequently sintered at 1600 °C for 4 h. The mechanical properties and the damage behavior of the coarse-grained refractory composites were investigated at high temperatures between 1300 and 1500 °C.

View Article and Find Full Text PDF

Synthetic calcium phosphate bone graft substitutes are widely recognized for their biocompatibility and resorption characteristics in the treatment of large bone defects. However, due to their inherent brittleness, applications in load-bearing situations always require reinforcement by additional metallic implants. Improved mechanical stability would eliminate the need for non-resorbable metallic implants.

View Article and Find Full Text PDF

Recently, uniform, non-agglomerated, hexagonal β-tricalcium phosphate (β-TCP) platelets (diameter≈400-1700nm, h≈100-200nm) were obtained at fairly moderate temperatures (90-170°C) by precipitation in ethylene glycol. Unfortunately, the platelet aspect ratios (diameter/thickness) obtained in the latter study were too small to optimize the strength of polymer-β-TCP composites. Therefore, the aim of the present study was to investigate β-TCP platelet crystallization kinetics, and based on this, to find ways to better control the β-TCP aspect ratio.

View Article and Find Full Text PDF

Calcium phosphates (CaPs) are widely used as bone graft substitutes but are inherently brittle, hence restricting their use to mechanically protected environments. Combining them with a tough polymer matrix could potentially lead to a composite with load-bearing properties. However, the highest mechanical properties can only be achieved if the CaP particles possess very precise features: they should be uniform in size and shape, non-agglomerated, elongated and thin.

View Article and Find Full Text PDF

Ceramic filters, working on the depth filtration principle, are known to improve drinking water quality by removing human pathogenic microorganisms from contaminated water. However, these microfilters show no sufficient barrier for viruses having diameters down to 20 nm. Recently, it was shown that the addition of positively charged materials, for example, iron oxyhydroxide, can improve virus removal by adsorption mechanisms.

View Article and Find Full Text PDF

Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses.

View Article and Find Full Text PDF

Stable nanoparticle dispersions in concentrated electrolytes are prerequisite for a variety of advanced nanocomposites prepared by deposition techniques. In this work we investigate the synthesis of electroless Ni-P/functional ceramic coatings from concentrated electrolytes containing functional nanoparticles such as TiO(2), α-Fe(2)O(3), ITO, and CeO(2). Stable nanoparticle dispersions in both low and high phosphorus electrolytes are achieved at plating temperatures (80-90 °C) by a generalized scheme employing comb-polyelectrolyte and antifreeze additives.

View Article and Find Full Text PDF