Lancet Infect Dis
April 2020
Background: The monoclonal antibody m102.4 is a potent, fully human antibody that neutralises Hendra and Nipah viruses in vitro and in vivo. We aimed to investigate the safety, tolerability, pharmacokinetics, and immunogenicity of m102.
View Article and Find Full Text PDFFront Microbiol
November 2019
Acetogens can fix carbon (CO or CO) into acetyl-CoA via the Wood-Ljungdahl pathway (WLP) that also makes them attractive cell factories for the production of fuels and chemicals from waste feedstocks. Although most biochemical details of the WLP are well understood and systems-level characterization of acetogen metabolism has recently improved, key transcriptional features such as promoter motifs and transcriptional regulators are still unknown in acetogens. Here, we use differential RNA-sequencing to identify a previously undescribed promoter motif associated with essential genes for autotrophic growth of the model-acetogen .
View Article and Find Full Text PDFCD117 (c-Kit) is a tyrosine kinase receptor that is overexpressed in multiple dog tumors. There is 100% homology between the juxtamembrane domain of human and canine CD117, and many cancer-causing mutations occur in this region in both species. Thus, CD117 is an important target for cancer treatment in dogs and for comparative oncology studies.
View Article and Find Full Text PDFHuman malignant mesothelioma is a chemoresistant tumour that develops from mesothelial cells, commonly associated with asbestos exposure. Malignant mesothelioma incidence rates in European countries are still rising and Australia has one of the highest burdens of malignant mesothelioma on a population basis in the world. Therapy using systemic delivery of free cytotoxic agents is associated with many undesirable side effects due to non-selectivity, and is thus dose-limited which limits its therapeutic potential.
View Article and Find Full Text PDFTargeted nanomaterials promise improved therapeutic efficacy, however their application in nanomedicine is limited due to complexities associated with protein conjugations to synthetic nanocarriers. A facile method to generate actively targeted nanomaterials is developed and exemplified using polyethylene glycol (PEG)-functional nanostructures coupled to a bispecific antibody (BsAb) with dual specificity for methoxy PEG (mPEG) epitopes and cancer targets such as epidermal growth factor receptor (EGFR). The EGFR-mPEG BsAb binds with high affinity to recombinant EGFR (KD : 1 × 10(-9) m) and hyperbranched polymer (HBP) consisting of mPEG (KD : 10 × 10(-9) m) and demonstrates higher avidity for HBP compared to linear mPEG.
View Article and Find Full Text PDF