Publications by authors named "Christopher Zambrano"

About one-tenth of patients with untreated chronic syphilis and tertiary syphilis develop structural complications involving the coronary ostia, ascending aorta, or aortic root. We describe a unique case of a large aortic root aneurysm of the noncoronary sinus with extrinsic compression of the right coronary artery, a complication of tertiary syphilis. Surgical intervention involved valve-sparing aortic root reconstruction with right coronary ostia reimplantation (hemi-Yacoub).

View Article and Find Full Text PDF

The in vivo role of endothelial nitric oxide synthase (eNOS) uncoupling mediating oxidative stress in ischemia/reperfusion (I/R) injury has not been well established. In vitro, eNOS coupling refers to the reduction of molecular oxygen to L-arginine oxidation and generation of L-citrulline and nitric oxide NO synthesis in the presence of an essential cofactor, tetrahydrobiopterin (BH(4)). Whereas uncoupled eNOS refers to that the electron transfer becomes uncoupled to L-arginine oxidation and superoxide is generated when the dihydrobiopterin (BH(2)) to BH(4) ratio is increased.

View Article and Find Full Text PDF

Reduced nitric oxide (NO) bioavailability and increased oxidative stress are major factors mediating ischemia/reperfusion (I/R) injury. Tetrahydrobiopterin (BH(4)) is an essential cofactor of endothelial NO synthase (eNOS) to produce NO, whereas dihydrobiopterin (BH(2)) can shift the eNOS product profile from NO to superoxide, which is further converted to hydrogen peroxide (H(2)O(2)) and cause I/R injury. The effects of BH(4) and BH(2) on oxidative stress and postreperfused cardiac functions were examined in ex vivo myocardial and in vivo femoral I (20 min)/R (45 min) models.

View Article and Find Full Text PDF

The role of protein kinase C epsilon (PKC epsilon) in polymorphonuclear leukocyte (PMN)-induced myocardial ischemia/reperfusion (MI/R) injury and novel-related mechanisms, such as regulation of vascular endothelium nitric oxide (NO) and hydrogen peroxide (H2O2) release from blood vessels, have not been previously evaluated. A cell-permeable PKC epsilon peptide activator (1-10 microM) significantly increased endothelial NO release from non-ischemic rat aortic segments (p < 0.01).

View Article and Find Full Text PDF