Publications by authors named "Christopher Yung"

We have developed a low-cost micro-diffuse reflectance infrared Fourier transform spectroscopic (micro-DRIFTS) setup for measuring the reflectance of small area diffuse samples. The system performance is characterized and then demonstrated on small area vertically aligned carbon nanotube (VACNT) samples. We find that our system can measure samples with a spatial resolution of approximately 140 µm with sensitivities of 10s of ppm in the 2 µm - 18 µm spectral window.

View Article and Find Full Text PDF

We have developed a planar absolute radiometer for room temperature (PARRoT) that will replace the legacy C-series calorimeter as the free-space continuous-wave laser power detector standard at the National Institute of Standards and Technology (NIST). This instrument will lower the combined relative expanded measurement uncertainty (k = 2) from 0.84 % to 0.

View Article and Find Full Text PDF

The technique of phase contrast imaging, combined with tomographic reconstructions, can rapidly measure ultrasonic fields propagating in water, including ultrasonic fields with complex wavefront shapes, which are difficult to characterize with standard hydrophone measurements. Furthermore, the technique can measure the absolute pressure amplitudes of ultrasonic fields without requiring a pressure calibration. Absolute pressure measurements have been previously demonstrated using optical imaging methods for ultrasonic frequencies below 2.

View Article and Find Full Text PDF

Spectrally resolved photoacoustic imaging is promising for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds and causes errors if the sample changes in time between images acquired at different wavelengths.

View Article and Find Full Text PDF

We report the development of an optically transparent high-frequency ultrasonic transducer using lithium niobate single-crystal and indium-tin-oxide electrodes with up to 90% optical transmission in the visible-to-near-infrared spectrum. The center frequency of the transducer was at 36.9 MHz with 33.

View Article and Find Full Text PDF

Mid-infrared (MIR) microscopy provides rich chemical and structural information about biological samples, without staining. Conventionally, the long MIR wavelength severely limits the lateral resolution owing to optical diffraction; moreover, the strong MIR absorption of water ubiquitous in fresh biological samples results in high background and low contrast. To overcome these limitations, we propose a method that employs photoacoustic detection highly localized with a pulsed ultraviolet (UV) laser on the basis of the Grüneisen relaxation effect.

View Article and Find Full Text PDF

We demonstrate improved manufacturability of spectrally flat detectors for visible to mid-infrared wavelengths by characterizing a carbon nanotube spray coating compatible with lithium tantalate and other thermal sensors. Compared against previous spray coatings, it demonstrated the highest responsivity yet attained due to both higher absorptivity and thermal diffusivity, while also being matured to a commercially available product. It demonstrated spectral nonuniformity from 300 nm to 12 μm less than 1% with uncertainty (k=2) under 0.

View Article and Find Full Text PDF

Objective: The National Children's Study is a long-term epidemiologic study of 100,000 children from 105 locations across the United States. It will require information on a large number of environmental variables to address its core hypotheses. The resources available to collect actual home and personal exposure samples are limited, with most of the home sampling completed on periodic visits and the personal sampling generally limited to biomonitoring.

View Article and Find Full Text PDF