Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl2 -treated cells where HIF-1α has been artificially elevated.
View Article and Find Full Text PDFWe have previously shown that human prostate cancer cells are capable of acquiring malignant attributes through interaction with stromal cells in the tumor microenvironment, while the interacting stromal cells can also become affected with both phenotypic and genotypic alterations. This study used a co-culture model to investigate the mechanism underlying the co-evolution of cancer and stromal cells. Red fluorescent androgen-dependent LNCaP prostate cancer cells were cultured with a matched pair of normal and cancer-associated prostate myofibroblast cells to simulate cancer-stromal interaction, and cellular changes in the co-culture were documented by tracking the red fluorescence.
View Article and Find Full Text PDFPurpose: Prostate tumor cells frequently show the features of osteoblasts, which are differentiated from bone marrow mesenchymal stem cells. We examined human prostate cancer cell lines and clinical prostate cancer specimens for additional bone marrow mesenchymal stem cell properties.
Experimental Design: Prostate cancer cell lines were induced for osteoblastogenic and adipogenic differentiation, detected by standard staining methods and confirmed by lineage-specific marker expression.
The most salient feature of prostate cancer is its striking ethnic disparity. High incidences of the disease are documented in two ethnic groups: descendents of the Northern Europeans and African Americans. Other groups, including native Africans, are much less susceptible to the disease.
View Article and Find Full Text PDF