Publications by authors named "Christopher Wiggins"

Background: The World Cancer Research Fund/American Institute for Cancer Research Cancer Prevention Recommendations are lifestyle-based guidelines that aim to reduce cancer risk. A systematic review and meta-analysis of studies investigating associations between a score for adherence to the 2018 Cancer Prevention Recommendations and cancer risk was conducted.

Methods: MEDLINE, Embase, Web of Science, and Scopus were searched for studies published to November 28, 2022.

View Article and Find Full Text PDF

The 9.4 T scanner in Maastricht is a whole-body magnet with head gradients and parallel RF transmit capability. At the time of the design, it was conceptualized to be one of the best fMRI scanners in the world, but it has also been used for anatomical and diffusion imaging.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is a cornerstone in multiple sclerosis (MS) diagnostics and monitoring. Ultra-high field (UHF) MRI is being increasingly used and becoming more accessible. Due to the small diameter and mobility of the spinal cord, imaging this structure at ultra-high fields poses additional challenges compared to brain imaging.

View Article and Find Full Text PDF

Background And Purpose: Dynamic contrast-enhanced MRI (DCE-MRI) can be employed to assess the blood-brain barrier (BBB) integrity. Detection of BBB leakage at lower field strengths (≤3T) is cumbersome as the signal is noisy, while leakage can be subtle. Utilizing the increased signal-to-noise ratio at higher field strengths, we explored the application of 7T DCE-MRI for assessing BBB leakage.

View Article and Find Full Text PDF

Identifying a structural brain lesion on MRI has important implications in epilepsy and is the most important factor that correlates with seizure freedom after surgery in patients with drug-resistant focal onset epilepsy. However, at conventional magnetic field strengths (1.5 and 3T), only approximately 60%-85% of MRI examinations reveal such lesions.

View Article and Find Full Text PDF

Background And Purpose: In neuro-oncology, high spatial accuracy is needed for clinically acceptable high-precision radiation treatment planning (RTP). In this study, the clinical applicability of anatomically optimised 7-Tesla (7T) MR images for reliable RTP is assessed with respect to standard clinical imaging modalities.

Materials And Methods: System- and phantom-related geometrical distortion (GD) were quantified on clinically-relevant MR sequences at 7T and 3T, and on CT images using a dedicated anthropomorphic head phantom incorporating a 3D grid-structure, creating 436 points-of-interest.

View Article and Find Full Text PDF

Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.

View Article and Find Full Text PDF

Objective: A fine structure of the corpus callosum (CC), consisting of radial lines, is seen in historical anatomical atlases as far back as that of Vicq d'Azyr (1786). This study examines a similar pattern observed in vivo using high-resolution MR images at 7 T.

Methods: 8 healthy subjects were examined with 7.

View Article and Find Full Text PDF

Purpose: To eliminate a slice-position-dependent excitation error commonly observed in bipolar-gradient composite excitations such as spokes pulses in parallel transmission.

Theory And Methods: An undesired timing delay between subpulses in the composite pulse and their bipolar slice-selective gradient is hypothesized to cause the error. A mathematical model is presented here to relate this mismatch to an induced slice-position-dependent phase difference between the subpulses.

View Article and Find Full Text PDF

Purpose: In order to fully benefit from the improved signal-to-noise and contrast-to-noise ratios at 9.4T, the challenges of B1+ inhomogeneity and the long acquisition time of high-resolution 2D gradient-recalled echo (GRE) imaging were addressed.

Theory And Methods: Flip angle homogenized excitations were achieved by parallel transmission (pTx) of 3-spoke pulses, designed by magnitude least-squares optimization in a slice-by-slice fashion; the acquisition time reduction was achieved by simultaneous multislice (SMS) pulses.

View Article and Find Full Text PDF

Objective: This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths.

Materials And Methods: The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0 field maps were analyzed quantitatively to assess inter-site reproducibility.

View Article and Find Full Text PDF

Objectives: The use of 7 Tesla (T) magnetic resonance imaging (MRI) has recently shown great potential for high-resolution soft-tissue neuroimaging and visualization of microvascularization in glioblastoma (GBM). We have designed a clinical trial to explore the value of 7 T MRI in radiation treatment of GBM. For this aim we performed a preparatory study to investigate the technical feasibility of incorporating 7 T MR images into the neurosurgical navigation and radiotherapy treatment planning (RTP) systems via qualitative and quantitative assessment of the image quality.

View Article and Find Full Text PDF

Objectives: To overcome the challenges of B0 and RF excitation inhomogeneity at ultra-high field MRI, a workflow for volumetric B0 and flip-angle homogenisation was implemented on a human 9.4 T scanner.

Materials And Methods: Imaging was performed with a 9.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), the hippocampus is an early site of tau pathology and neurodegeneration. Histological studies have shown that lesions are not uniformly distributed within the hippocampus. Moreover, alterations of different hippocampal layers may reflect distinct pathological processes.

View Article and Find Full Text PDF

Mouse lemurs are non-human primate models of cerebral aging and neurodegeneration. Much smaller than other primates, they recapitulate numerous features of human brain aging, including progressive cerebral atrophy and correlation between regional atrophy and cognitive impairments. Characterization of brain atrophy in mouse lemurs has been done by MRI measures of regional CSF volume and by MRI measures of regional atrophy.

View Article and Find Full Text PDF

Purpose: To investigate, via numerical simulations, the compliance of the specific absorption rate (SAR) versus temperature guidelines for the human head in magnetic resonance imaging procedures utilizing parallel transmission at high field.

Materials And Methods: A combination of finite element and finite-difference time-domain methods was used to calculate the evolution of the temperature distribution in the human head for a large number of parallel transmission scenarios. The computations were performed on a new model containing 20 anatomical structures.

View Article and Find Full Text PDF

Identifying emerging viral pathogens and characterizing their transmission is essential to developing effective public health measures in response to an epidemic. Phylogenetics, though currently the most popular tool used to characterize the likely host of a virus, can be ambiguous when studying species very distant to known species and when there is very little reliable sequence information available in the early stages of the outbreak of disease. Motivated by an existing framework for representing biological sequence information, we learn sparse, tree-structured models, built from decision rules based on subsequences, to predict viral hosts from protein sequence data using popular discriminative machine learning tools.

View Article and Find Full Text PDF

Subcortical nuclei are increasingly targeted for deep brain stimulation (DBS) and for gene transfer to treat neurological and psychiatric disorders. For a successful outcome in patients, it is critical to place DBS electrodes or infuse viral vectors accurately within targeted nuclei. However current MRI approaches are still limited to localize brainstem and basal ganglia nuclei accurately.

View Article and Find Full Text PDF

Detection of amyloid plaques in the brain by in vivo neuroimaging is a very promising biomarker approach for early diagnosis of Alzheimer's disease (AD) and evaluation of therapeutic efficacy. Here we describe a new method to detect amyloid plaques by in vivo magnetic resonance imaging (MRI) based on the intracerebroventricular injection of a nontargeted gadolinium (Gd)-based contrast agent, which rapidly diffuses throughout the brain and increases the signal and contrast of magnetic resonance (MR) images by shortening the T1 relaxation time. This gain in image sensitivity after in vitro and in vivo Gd staining significantly improves the detection and resolution of individual amyloid plaques in the cortex and hippocampus of AD transgenic mice.

View Article and Find Full Text PDF

Background: Adults with X-linked adrenoleukodystrophy (X-ALD) remain at risk for progressive neurological deterioration. Phenotypes vary in their pathology, ranging from axonal degeneration to inflammatory demyelination. The severity of symptoms is poorly explained by conventional imaging.

View Article and Find Full Text PDF

Recent work has proposed the use of steady-state free precession (SSFP) as an alternative to the conventional methods for obtaining functional MRI (FMRI) data. The contrast mechanism in SSFP is likely to be related to conventional FMRI signals, but the details of the signal changes may differ in important ways. Functional contrast in SSFP has been proposed to result from several different mechanisms, which are likely to contribute in varying degrees depending on the specific parameters used in the experiment.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has become a powerful tool for studying the normal and diseased human brain. The application of fMRI in detecting neuronal signals in the trigeminal system, however, has been hindered by low detection sensitivity due to activation artifacts caused by cardiac pulse-induced brain and brainstem movement. A variety of cardiac gating techniques have been proposed to overcome this issue, typically by phase locking the sampling to a particular time point during each cardiac cycle.

View Article and Find Full Text PDF