Publications by authors named "Christopher Whittington"

Article Synopsis
  • Researchers have designed and successfully created a slotted photonic crystal with features as small as 40 nm using a standard silicon photonics process.
  • The unique design increases the electric field energy by four times compared to traditional slotted photonic crystals by using a specialized unit cell shape that enhances optical energy localization.
  • This work paves the way for future development of advanced photonic structures that could improve applications like biosensing and light manipulation on-chip.
View Article and Find Full Text PDF

We demonstrate a higher sensitivity detection of proteins in a photonic crystal platform by including a deep subwavelength feature in the unit cell that locally increases the energy density of light. Through both simulations and experiments, the sensing capability of a deep subwavelength-engineered silicon antislot photonic crystal nanobeam (PhCNB) cavity is compared to that of a traditional PhCNB cavity. The redistribution and local enhancement of the energy density by the 50 nm antislot enable stronger light-molecule interaction at the surface of the antislot and lead to a larger resonance shift upon protein binding.

View Article and Find Full Text PDF

We demonstrate that edge currents develop in active chiral matter due to boundary shielding over a wide range of densities corresponding to a gas, fluid, and crystal. The system is composed of spinning disk-shaped grains with chirally arranged tilted legs confined in a circular vibrating chamber. The edge currents are shown to increasingly drive circulating bulk flows with area fraction as percolating clusters develop due to increasing spin-coupling between neighbors mediated by frictional contacts.

View Article and Find Full Text PDF

Despite rigorous sterilization protocols placed in surgical procedures, there is demonstrated evidence that show patients contract infections while hospitalized. This study aims to investigate the presence of biological materials in osteotome surgical tools after sterilization processes, determine the relationship between lack of sharpness and cross-contamination, and evaluate the influence of materials surface coating as a potential contamination preventive. Three commercially available osteotomes with different surface coatings were studied and submitted to a procedure of bone-cutting cycles.

View Article and Find Full Text PDF

Background: Osteotomes are bone cutting tools commonly reused in orthopedic surgical procedures. Despite undergoing rigorous cleaning, visual inspection, and sterilization procedures between every use, the condition of the cutting blade edge is commonly not qualitatively assessed. Subjective feedback from surgeons suggests a large variation in osteotome cutting-edge sharpness is found during use.

View Article and Find Full Text PDF