Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco-evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion.
View Article and Find Full Text PDFHow repeatable is evolution at genomic and phenotypic scales? We studied the repeatability of evolution during 8 generations of colonization using replicated microcosm experiments with the red flour beetle, . Based on the patterns of shared allele frequency changes that occurred in populations from the same generation or experimental location, we found adaptive evolution to be more repeatable in the introduction and establishment phases of colonization than in the spread phase, when populations expand their range. Lastly, by studying changes in allele frequencies at conserved loci, we found evidence for the theoretical prediction that range expansion reduces the efficiency of selection to purge deleterious alleles.
View Article and Find Full Text PDFAdvances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology.
View Article and Find Full Text PDFIt is well known that species interactions between exotic and native species are important for determining the success of biological invasions and how influential exotic species become in invaded communities. The strength and type of interactions between species can substantially vary, however, from negative and detrimental to minimal or even positive. Increasing evidence from the literature shows that exotic species have positive interactions with native species more often than originally thought.
View Article and Find Full Text PDFNatural systems contain more complexity than is accounted for in models of modern coexistence theory. Coexistence modelling often disregards variation arising from stochasticity in biological processes, heterogeneity among individuals and plasticity in trait values. However, these unaccounted-for sources of uncertainty are likely to be ecologically important and have the potential to impact estimates of coexistence.
View Article and Find Full Text PDFWhat prevents populations of a species from adapting to the novel environments outside the species' geographic distribution? Previous models highlighted how gene flow across spatial environmental gradients determines species expansion versus extinction and the location of species range limits. However, space is only one of two axes of environmental variation-environments also vary in time, and we know temporal environmental variation has important consequences for population demography and evolution. We used analytical and individual-based evolutionary models to explore how temporal variation in environmental conditions influences the spread of populations across a spatial environmental gradient.
View Article and Find Full Text PDFModelling species interactions in diverse communities traditionally requires a prohibitively large number of species-interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity-inducing priors on non-linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out-of-sample predictive accuracy and parameter recovery across different input sample sizes.
View Article and Find Full Text PDFUnderstanding the movement of species' ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco-evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco-evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits.
View Article and Find Full Text PDFClimate change is an escalating threat facing populations around the globe, necessitating a robust understanding of the ecological and evolutionary mechanisms dictating population responses. However, populations respond to climate change not in isolation but rather in the context of their existing ranges. In particular, spatial population structure within a range (e.
View Article and Find Full Text PDFThe spread of vector-borne pathogens depends on a complex set of interactions among pathogen, vector, and host. In single-host systems, pathogens can induce changes in vector preferences for infected vs. healthy hosts.
View Article and Find Full Text PDFRange expansions are crucibles for rapid evolution, acting via both selective and neutral mechanisms. While selection on traits such as dispersal and fecundity may increase expansion speed, neutral mechanisms arising from repeated bottlenecks and genetic drift in edge populations (i.e.
View Article and Find Full Text PDFColonisation is a fundamental ecological and evolutionary process that drives the distribution and abundance of organisms. The initial ability of colonists to establish is determined largely by the number of founders and their genetic background. We explore the importance of these demographic and genetic properties for longer term persistence and adaptation of populations colonising a novel habitat using experimental populations of Tribolium castaneum.
View Article and Find Full Text PDFRange expansions are central to two ecological issues reshaping patterns of global biodiversity: biological invasions and climate change. Traditional theory considers range expansion as the outcome of the demographic processes of birth, death and dispersal, while ignoring the evolutionary implications of such processes. Recent research suggests evolution could also play a critical role in determining expansion speed but controlled experiments are lacking.
View Article and Find Full Text PDFDifferences in tolerance to water stress may underlie ecological divergence of closely related ploidy lineages. However, the mechanistic basis of physiological variation governing ecogeographical cytotype segregation is not well understood. Here, using Brachypodium distachyon and its derived allotetraploid B.
View Article and Find Full Text PDF• The ecological and adaptive significance of plant polyploidization is not well understood and no clear pattern of association between polyploid frequency and environment has emerged. Climatic factors are expected to predict cytotype distribution. However, the relationship among climate, cytotype distribution and variation of abiotic stress tolerance traits has rarely been examined.
View Article and Find Full Text PDF