In both humans and mice, performance on tests of intelligence or general cognitive ability (GCA) is related to dopamine D1 receptor-mediated activity in the prelimbic cortex, and levels of DRD1 mRNA predict the GCA of mice. Here we assessed the turnover rate of D1 receptors as well as the expression level of the D1 chaperone protein (DRiP78) in the medial PPC (mPFC) of mice to determine whether rate of receptor turnover was associated with variations in the GCA of genetically heterogeneous mice. Following assessment of GCA (aggregate performance on four diverse learning tests) mice were administered an irreversible dopamine receptor antagonist (EEDQ), after which the density of new D1 receptors were quantified.
View Article and Find Full Text PDFThe typical practice of averaging group performance during extinction gives the impression that responding declines gradually and homogeneously. However, previous studies of extinction in human infants have shown that some individuals persist in responding, whereas others abruptly cease responding. As predicted by theories of control, the infants who quickly resign typically display signs of sadness and despair when the expected reward is omitted.
View Article and Find Full Text PDFThe L1CAM (L1) gene encodes a cell adhesion molecule that contributes to several important processes in the developing and adult nervous system, including neuronal migration, survival, and plasticity. In humans and mice, mutations in the X chromosome-linked gene L1 cause severe neurological defects in males. L1 heterozygous female mice with one functional copy of the L1 gene show complex morphological features that are different from L1 fully-deficient and wild-type littermate mice.
View Article and Find Full Text PDFAttention is a component of the working memory system, and is responsible for protecting task-relevant information from interference. Cognitive performance (particularly outside of the laboratory) is often plagued by interference, and the source of this interference, either external or internal, might influence the expression of individual differences in attentional ability. By definition, external attention (also described as "selective attention") protects working memory against sensorial distractors of all kinds, while internal attention (also called "inhibition") protects working memory against emotional impulses, irrelevant information from memory, and automatically-generated responses.
View Article and Find Full Text PDFA common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance.
View Article and Find Full Text PDFIncreases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. Here, we explored whether physical exercise might induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact cognitive performance.
View Article and Find Full Text PDFImposed social subordination, such as that which accompanies physical defeat or alienation, has been associated with impaired cognitive function in both human and non-human animals. Here we examined whether domain-specific and/or domain-general learning abilities (c.f.
View Article and Find Full Text PDFContemporary descriptions of human intelligence hold that this trait influences a broad range of cognitive abilities, including learning, attention, and reasoning. Like humans, individual genetically heterogeneous mice express a "general" cognitive trait that influences performance across a diverse array of learning and attentional tasks, and it has been suggested that this trait is qualitatively and structurally analogous to general intelligence in humans. However, the hallmark of human intelligence is the ability to use various forms of "reasoning" to support solutions to novel problems.
View Article and Find Full Text PDF"General intelligence" is purported to influence diverse domain-specific learning abilities in humans, and previous research indicates that an analogous trait is expressed in CD-1 outbred mice. In humans and mice, exploratory tendencies are predictive of general cognitive abilities, such that higher cognitive abilities are associated with elevated levels of exploration. However, in mice, repeated exposure to novel environments outside the home cage has been found to up-regulate exploratory tendencies but has no commensurate effect on general learning abilities, suggesting that exploratory tendencies do not causally influence general cognitive performance.
View Article and Find Full Text PDFLearning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm maze task that required the mice to remember and operate on two sets of overlapping guidance (spatial) cues.
View Article and Find Full Text PDFBackground: Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical role in animals' performance in both working memory and selective attention tasks. Owing to this role of the PFC in the regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that exhibited a wide range of general learning abilities (i.
View Article and Find Full Text PDFIn both humans and mice, the efficacy of working memory capacity and its related process, selective attention, are each strongly predictive of individuals' aggregate performance in cognitive test batteries [1-9]. Because working memory is taxed during most cognitive tasks, the efficacy of working memory may have a causal influence on individuals' performance on tests of "intelligence" [10, 11]. Despite the attention this has received, supporting evidence has been largely correlational in nature (but see [12]).
View Article and Find Full Text PDFLearning impairments and the instability of memory are defining characteristics of cognitive aging. However, it is unclear if deficits in the expression of new memories reflect an accelerated decay of the target memory or a consequence of inefficient learning. Here, aged mice (19-21-mo old) exhibited acquisition deficits (relative to 3-5-mo old mice) on three learning tasks, although these deficits were overcome with additional training.
View Article and Find Full Text PDF