Evolutionary changes in geographic distribution and larval host plants may promote the rapid diversification of montane insects, but this scenario has been rarely investigated. We studied rapid radiation of the butterfly genus Colias, which has diversified in mountain ecosystems in Eurasia, Africa, and the Americas. Based on a dataset of 150 nuclear protein-coding genetic loci and mitochondrial genomes, we constructed a time-calibrated phylogenetic tree of Colias species with broad taxon sampling.
View Article and Find Full Text PDFGeneralist plant-feeding insects are characterised by a broad host repertoire that can comprise several families or even different orders of plants. The genetic and physiological mechanisms underlying the use of such a wide host range are still not fully understood. Earlier studies indicate that the consumption of different host plants is associated with host-specific gene expression profiles.
View Article and Find Full Text PDFComparative analyses of gene birth-death dynamics have the potential to reveal gene families that played an important role in the evolution of morphological, behavioral, or physiological variation. Here, we used whole genomes of 30 species of butterflies and moths to identify gene birth-death dynamics among the Lepidoptera that are associated with specialist or generalist feeding strategies. Our work advances this field using a uniform set of annotated proteins for all genomes, investigating associations while correcting for phylogeny, and assessing all gene families rather than a priori subsets.
View Article and Find Full Text PDFThe genetic components of the circadian clock have been implicated as involved in photoperiodic regulation of winter diapause across various insect groups, thereby contributing to adaptation to adverse seasonal conditions. So far, the effects of within-population variation in these genes have not been well explored. Here, we present an experimental test of the effects of within-population variation at two circadian genes, and , on photoperiodic responses in the butterfly .
View Article and Find Full Text PDFOrganisms inhabiting highly seasonal environments must cope with a wide range of environmentally induced challenges. Many seasonal challenges require extensive physiological modification to survive. In winter, to survive extreme cold and limited resources, insects commonly enter diapause, which is an endogenously derived dormant state associated with minimized cellular processes and low energetic expenditure.
View Article and Find Full Text PDFPhenotypic plasticity is produced and maintained by processes regulating the transcriptome. While differential gene expression is among the most important of these processes, relatively little is known about other sources of transcriptional variation. Previous work suggests that alternative splicing plays an extensive and functionally unique role in transcriptional plasticity, though plastically spliced genes may be more constrained than the remainder of expressed genes.
View Article and Find Full Text PDFThe neritid snail Theodoxus fluviatilis is found across habitats differing in salinity, from shallow waters along the coast of the Baltic Sea to lakes throughout Europe. Living close to the water surface makes this species vulnerable to changes in salinity in their natural habitat, and the lack of a free-swimming larval stage limits this species' dispersal. Together, these factors have resulted in a patchy distribution of quite isolated populations differing in their salinity tolerances.
View Article and Find Full Text PDFSpots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry.
View Article and Find Full Text PDFUnderstanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown.
View Article and Find Full Text PDFIn this study, we investigated whether patterns of gene expression in larvae feeding on different plants can explain important aspects of the evolution of insect-plant associations, such as phylogenetic conservatism of host use and re-colonization of ancestral hosts that have been lost from the host repertoire. To this end, we performed a phylogenetically informed study comparing the transcriptomes of 4 nymphalid butterfly species in Polygonia and the closely related genus Nymphalis. Larvae were reared on Urtica dioica, Salix spp.
View Article and Find Full Text PDFThe ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation.
View Article and Find Full Text PDFCoevolutionary interactions are responsible for much of the Earth's biodiversity, with key innovations driving speciation bursts on both sides of the interaction. One persistent question is whether macroevolutionary traits identified as key innovations accurately predict functional performance and selection dynamics within species, as this necessitates characterizing their function, investigating their fitness consequences, and exploring the selection dynamics acting upon them. Here, we used CRISPR-Cas9 mediating nonhomologous end joining (NHEJ) in the butterfly species to knock out and directly assess the function and fitness impacts of nitrile specifier protein () and major allergen ().
View Article and Find Full Text PDFHow organisms that are part of the same trophic network respond to environmental variability over small spatial scales has been studied in a multitude of systems. Prevailing theory suggests a large role for plasticity in key traits among interacting species that allows matching of life cycles or life-history traits across environmental gradients, for instance insects tracking host-plant phenology across variable environments (Posledovich et al. 2018).
View Article and Find Full Text PDFDiapause, a general shutdown of developmental pathways, is a vital adaptation allowing insects to adjust their life cycle to adverse environmental conditions such as winter. Diapause in the pupal stage is regulated by the major developmental hormones prothoracicotropic hormone (PTTH) and ecdysone. Termination of pupal diapause in the butterfly Pieris napi depends on low temperatures; therefore, we study the temperature-dependence of PTTH secretion and ecdysone sensitivity dynamics throughout diapause, with a focus on diapause termination.
View Article and Find Full Text PDFMost studies in the field of ecology and evolution aiming to connect genotype to phenotype rarely validate identified loci using functional tools. Recent developments in RNA interference (RNAi) and clustered regularly interspaced palindromic repeats (CRISPR)-Cas genome editing have dramatically increased the feasibility of functional validation. However, these methods come with specific challenges when applied to emerging model organisms, including limited spatial control of gene silencing, low knock-in efficiencies, and low throughput of functional validation.
View Article and Find Full Text PDFInsects have been key players in the assessments of biodiversity impacts of anthropogenically driven environmental change, including the evolutionary and ecological impacts of climate change. Populations of Edith's Checkerspot Butterfly (Euphydryas editha) adapt rapidly to diverse environmental conditions, with numerous high-impact studies documenting these dynamics over several decades. However, studies of the underlying genetic bases of these responses have been hampered by missing genomic resources, limiting the ability to connect genomic responses to environmental change.
View Article and Find Full Text PDFMale colour patterns of the Trinidadian guppy (Poecilia reticulata) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a 'supergene' on the sex chromosome. Here, we phenotype and genotype four guppy 'Iso-Y lines', where colour was inherited along the patriline for 40 generations.
View Article and Find Full Text PDFSeasonal plasticity is accomplished via tightly regulated developmental cascades that translate environmental cues into trait changes. Little is known about how alternative splicing and other posttranscriptional molecular mechanisms contribute to plasticity or how these mechanisms impact how plasticity evolves. Here, we use transcriptomic and genomic data from the butterfly Bicyclus anynana, a model system for seasonal plasticity, to compare the extent of differential expression and splicing and test how these axes of transcriptional plasticity differ in their potential for evolutionary change.
View Article and Find Full Text PDFMating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of butterflies from a sister species, allowing females to avoid costly heterospecific matings.
View Article and Find Full Text PDFMany insects exhibit geographical variation in voltinism, the number of generations produced per year. This includes high-latitude species in previously glaciated areas, meaning that divergent selection on life cycle traits has taken place during or shortly after recent colonization. Here, we use a population genomics approach to compare a set of nine Scandinavian populations of the butterfly Pararge aegeria that differ in life cycle traits (diapause thresholds and voltinism) along both north-south and east-west clines.
View Article and Find Full Text PDFDiapause is a common adaptation for overwintering in insects that is characterized by arrested development and increased tolerance to stress and cold. While the expression of specific candidate genes during diapause have been investigated, there is no general understanding of the dynamics of the transcriptional landscape as a whole during the extended diapause phenotype. Such a detailed temporal insight is important as diapause is a vital aspect of life cycle timing.
View Article and Find Full Text PDFThe global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity).
View Article and Find Full Text PDFThe kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP).
View Article and Find Full Text PDF