Publications by authors named "Christopher W Briggs"

During animal migration, ephemeral communities of taxa at all trophic levels co-occur over space and time. The interactions between predators and prey along migration corridors are ecologically and evolutionarily significant. However, these interactions remain understudied in terrestrial systems and warrant further investigations using novel approaches.

View Article and Find Full Text PDF

Migrating birds face a myriad of hazards, including higher exposure to parasites and numerous competing energy demands. It follows that migration may act as a selective filter and limit population growth. Understanding how individual-level physiological condition and disease status scale up to population dynamics through differential survival of individuals is necessary to identify threats and management interventions for migratory populations, many of which face increasing conservation challenges.

View Article and Find Full Text PDF

Comparative analyses in biology rely on the quality of available data. Methodological differences among studies may introduce variation in results that obscure patterns. In the field of eco-immunology, functional immune assays such as antimicrobial capacity assays are widely used for among-species applications.

View Article and Find Full Text PDF

Resident birds in temperate zones respond to seasonally fluctuating temperatures by adjusting their physiology, such as changes in basal metabolic rate or peak metabolic rate during cold exposure, or altering their organ sizes, so as to match the thermogenic requirements of their current environment. Climate change is predicted to cause increases in the frequency of heat and cold wave events, which could increase the likelihood that birds will face an environmental mismatch. Here, we examined seasonality and the effects of acute and chronic heat shock to 33°C and subsequent recovery from heat shock on the ultrastructure of the superficial pectoralis muscle fiber diameter, myonuclear domain (MND) and capillary density in two temperate bird species of differing body mass, the black-capped chickadee () and the rock pigeon ().

View Article and Find Full Text PDF