Publications by authors named "Christopher Uhl"

Goldspire™ is a personalized immunotherapy platform that combines whole tumor-derived cells with antisense oligonucleotide (IMV-001) against Insulin-Like Growth Factor-1 Receptor (IGF-1R) in biodiffusion chambers (BDCs; 0.1 μm pore). BDCs are exposed to 5-6 Gy and implanted at abdominal sites for ∼48 h to deliver an antigenic payload and immunostimulatory factors to train the immune system.

View Article and Find Full Text PDF

Background: IGV-001 is a personalized, autologous cancer cell-based immunotherapy conceived to deliver a tumor-derived antigenic payload in the context of immunostimulatory signals to patients with glioblastoma (GBM). IGV-001 consists of patient-derived GBM cells treated with an antisense oligodeoxynucleotide against insulin-like growth factor 1 receptor (IGF1R) and placed in proprietary biodiffusion chambers (BDCs). The BDCs are then exposed to 5-6 Gy radiation and implanted at abdominal sites for ~48 hours.

View Article and Find Full Text PDF

Background: Natural killer (NK) cells are part of the innate arm of the immune system; as such NK cells can be activated rapidly to target virus-infected cells and tumor cells without prior sensitization. The human NK-92MI cell line is among the most widely used NK cell in preclinical research studies and has also been approved for clinical applications. Previous studies have shown that osteoblasts (OSB) confer drug resistance in multiple myeloma (MM) and other cancers that metastasize to the bone marrow.

View Article and Find Full Text PDF

Two-dimensional (2D) cell culture is not ideal for traditional drug screening, because 2D culture does not accurately mimic the physiological microenvironment of tumor cells. Thus, a drug-screening system which more closely mimics the microenvironment of tumors is necessary. Here, we present a biomimicking bilayer microfluidic device that can facilitate antitumor drug screening.

View Article and Find Full Text PDF

A new plasmonic Mach-Zehnder modulator is demonstrated at a bit rate of 120 Gb/s NRZ-OOK with low peak-to-peak driving voltages of 178 mV below the HD-FEC limit. Such record low driving voltage requirements potentially translate into an electrical drive power consumption of 862 aJ/bit. The low drive voltages have been made possible by a new differential Mach-Zehnder modulator electrode design.

View Article and Find Full Text PDF

Patient derived organoids have emerged as robust preclinical models for screening anti-cancer therapeutics. Current 2D culturing methods do not provide physiological responses to therapeutics, therefore 3D models are being developed to better reproduce physiological responses. 3D culturing however often requires large initial cell populations and one week to one month to grow tumors ready for therapeutic testing.

View Article and Find Full Text PDF

A facile method for generation of tumor spheroids in large quantity with controllable size and high uniformity is presented. HCT-116 cells are used as a model cell line. Individual tumor cells are sparsely seeded onto petri-dishes.

View Article and Find Full Text PDF

Therapeutic delivery from microvasculature to cancerous sites is influenced by many factors including endothelial permeability, vascular flow rates/pressures, cancer secretion of cytokines and permeabilizing agents, and characteristics of the chosen therapeutics. This work uses bi-layer microfluidics capable of studying dye and therapeutic transport from a simulated vessel to a cancerous region while allowing for direct visualization and quantification of endothelial permeability. 2.

View Article and Find Full Text PDF

A wavy-herringbone (wavy-HB) structured microfluidic device was used to effectively and selectively capture and release circulating tumor cells (CTCs) by using immunoaffinity and magnetic force. This device was designed to create passive turbulence and increase the possibility of tumor cells colliding with the device wall. Under an external magnetic field, magnetic particles (MPs) coated with anti-EpCAM against a tumor cell surface protein (EpCAM) were immobilized over the wavy-HB surface to capture tumor cells.

View Article and Find Full Text PDF

Backround: Currently, the effect of vascular dynamic bending (VDB) has not been fully considered when studying cardiovascular stents' long-term mechanical properties, as the previous studies about stent's mechanical properties mostly focus on the effect of vascular pulsation (VP). More and more clinical reports suggested that the effect of VDB have a significant impact on stent.

Methods: In this paper, an explicit-implicit coupling simulation method was applied to analyze the mechanical responses of cardiovascular stents considering the effect of VDB.

View Article and Find Full Text PDF