We present an efficient method to calculate the primary and scattered x-ray photon fluence component of a mammographic image. This can be used for a range of clinically important purposes, including estimation of breast density, personalized image display, and quantitative mammogram analysis. The method is based on models of: the x-ray tube; the digital detector; and a novel ray tracer which models the diverging beam emanating from the focal spot.
View Article and Find Full Text PDFThe analysis of (x-ray) mammograms remains qualitative, relying on the judgement of clinicians. We present a novel method to compute a quantitative, normalized measure of tissue radiodensity traversed by the primary beam incident on each pixel of a mammogram, a measure we term the standard attenuation rate (SAR). SAR enables: the estimation of breast density which is linked to cancer risk; direct comparison between images; the full potential of computer aided diagnosis to be utilized; and a basis for digital breast tomosynthesis reconstruction.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2011
The detection of microcalcifications, reconstruction of clusters of microcalcifications and their subsequent classification into malignant and benign are important tasks in the early detection of breast cancer. Digital breast tomosynthesis (DBT) provides new opportunities in such tasks. By utilizing the multiple projections in DBT and using the geometry of DBT, we have developed an approach to them based on epipolar curves.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
May 2008
Breast density is a well-known breast cancer risk factor. Most current methods of measuring breast density are area based and subjective. Standard mammogram form (SMF) is a computer program using a volumetric approach to estimate the percent density in the breast.
View Article and Find Full Text PDF