Publications by authors named "Christopher T Waggener"

Signaling via the major excitatory amino acid glutamate has been implicated in the regulation of various aspects of the biology of oligodendrocytes, the myelinating cells of the central nervous system (CNS). In this respect, cells of the oligodendrocyte lineage have been described to express a variety of glutamate-responsive transmembrane proteins including sodium-dependent glutamate transporters. The latter have been well characterized to mediate glutamate clearance from the extracellular space.

View Article and Find Full Text PDF

CNS myelination and the maturation of the myelinating cells of the CNS, namely oligodendrocytes, are thought to be regulated by molecular mechanisms controlling the actin cytoskeleton. However, the exact nature of these mechanisms is currently only poorly understood. Here we assessed the role of calcium/calmodulin-dependent kinase type II (CaMKII), in particular CaMKIIβ, in oligodendrocyte maturation and CNS myelination.

View Article and Find Full Text PDF

During development, progenitors that are committed to differentiate into oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated within discrete regions of the neuroepithelium. More specifically, within the developing spinal cord and hindbrain ventrally located progenitor cells that are characterized by the expression of the transcription factor olig2 give temporally rise to first motor neurons and then oligodendrocyte progenitors. The regulation of this temporal neuron-glial switch has been found complex and little is known about the extrinsic factors regulating it.

View Article and Find Full Text PDF

Unilateral naris occlusion has been the method of choice for effecting stimulus deprivation in studies of olfactory plasticity. Early experiments emphasized the deleterious effects of this technique on the developing olfactory system while more recent studies have pointed to several apparently "compensatory" responses. However, the evidence for deprivation-induced compensatory processes in olfaction remains fragmentary.

View Article and Find Full Text PDF

Objective: Vesicular monoamine transporter 1 (VMAT-1) mRNA and protein were examined (1) to determine whether adult mouse brain expresses full-length VMAT-1 mRNA that can be translated to functional transporter protein and (2) to compare immunoreactive VMAT-1 proteins in brain and adrenal.

Methods: VMAT-1 mRNA was detected in mouse brain with RT-PCR. The cDNA was sequenced, cloned into an expression vector, transfected into COS-1 cells, and cell protein was assayed for VMAT-1 activity.

View Article and Find Full Text PDF

Unilateral naris occlusion (NO) has been widely used as a method of olfactory deprivation to study the role of stimulus-driven activity in olfactory development [P.C. Brunjes, Unilateral naris closure and olfactory system development, Brain Res.

View Article and Find Full Text PDF