Publications by authors named "Christopher T Shelton"

We present experimental measurements of the thermal boundary conductance (TBC) from 78-500 K across isolated heteroepitaxially grown ZnO films on GaN substrates. This data provides an assessment of the underlying assumptions driving phonon gas-based models, such as the diffuse mismatch model (DMM), and atomistic Green's function (AGF) formalisms used to predict TBC. Our measurements, when compared to previous experimental data, suggest that TBC can be influenced by long wavelength, zone center modes in a material on one side of the interface as opposed to the '"vibrational mismatch"' concept assumed in the DMM; this disagreement is pronounced at high temperatures.

View Article and Find Full Text PDF

The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet-visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate 'defect equilibrium engineering'.

View Article and Find Full Text PDF