Recent advancements in DNA techniques, metabarcoding, and bioinformatics could help expand the use of benthic diatoms in monitoring and assessment programs by providing relatively quick and increasingly cost-effective ways to quantify diatom diversity in environmental samples. However, such applications of DNA-based approaches are relatively new, and in the United States, unknowns regarding their applications at large scales exist because only a few small-scale studies have been done. Here, we present results from the first nationwide survey to use DNA metabarcoding (rbcL) of benthic diatoms, which were collected from 1788 streams and rivers across nine ecoregions spanning the conterminous USA.
View Article and Find Full Text PDFWastewaters and leachates from various inland resource extraction activities contain high ionic concentrations and differ in ionic composition, which complicates the understanding and effective management of their relative risks to stream ecosystems. To this end, we conducted a stream mesocosm dose-response experiment using two dosing recipes prepared from industrial salts. One recipe was designed to generally reflect the major ion composition of deep well brines (DWB) produced from gas wells (primarily Na, Ca, and Cl) and the other, the major ion composition of mountaintop mining (MTM) leachates from coal extraction operations (using salts dissociating to Ca, Mg, Na, SO and HCO)-both sources being extensive in the Central Appalachians of the USA.
View Article and Find Full Text PDFChanges in phosphorus concentrations affect periphytic diatom composition in streams, yet we rarely observe strong relationships between diatom richness and phosphorus. In contrast, changes in conductivity are strongly associated with differences in both diatom composition and richness. We hypothesised that we could better understand the mechanisms that control the phosphorus-richness relationship by examining relationships between phosphorus and the occurrence of individual diatom taxa, comparing these with relationships between conductivity and taxon occurrence, and documenting how niche breadths of taxa affect richness patterns.
View Article and Find Full Text PDFUsing the US EPA's Grants Reporting and Tracking System (GRTS), we test if completion of best management practices (BMPs) through the Clean Water Act Section (§)319 National Nonpoint Source Program was associated with a decreasing trend in total suspended solids (TSS) load (metric tons/year). The study area chosen had 21 completed projects in the Cuyahoga River watershed in northeastern Ohio from 2000 to 2018. The §319 projects ranged from dam removal, floodplain/wetland restoration to stormwater projects.
View Article and Find Full Text PDFIndicators based on nutrient-biota relationships in streams can inform water quality restoration and protection programs. Bacterial assemblages could be particularly useful indicators of nutrient effects because they are species-rich, important contributors to ecosystem processes in streams, and responsive to rapidly changing conditions. Here, we sampled 25 streams weekly (12-14 times each) and used 16S rRNA gene metabarcoding of periphyton-associated bacteria to quantify the effects of total phosphorus (TP) and total nitrogen (TN).
View Article and Find Full Text PDFObservational data are frequently used to better understand the effects of changes in P and N on stream biota, but nutrient gradients in streams are usually associated with gradients in other environmental factors, a phenomenon that complicates efforts to accurately estimate the effects of nutrients. Here, we propose a new approach for analyzing observational data in which we compare the effects of changes in nutrient concentrations in time within individual sites and in space among many sites. Covarying relationships between other, potentially confounding environmental factors and nutrient concentrations are unlikely to be the same in both time and space, and, therefore, estimated effects of nutrients that are similar in time and space are more likely to be accurate.
View Article and Find Full Text PDFWe estimate a cost function for a water treatment plant in Ohio to assess the avoided-treatment costs resulting from improved source water quality. Regulations and source water concerns motivated the treatment plant to upgrade its treatment process by adding a granular activated carbon building in 2012. The cost function uses daily observations from 2013 to 2016; this allows us to compare the results to a cost function estimated for 2007-2011 for the same plant.
View Article and Find Full Text PDFA data-driven approach to characterizing the risk of cyanobacteria-based harmful algal blooms (cyanoHABs) was undertaken for the Ohio River. Twenty-five years of river discharge data were used to develop Bayesian regression models that are currently applicable to 20 sites spread-out along the entire 1579 km of the river's length. Two site-level prediction models were developed based on the antecedent flow conditions of the two blooms that occurred on the river in 2015 and 2019: one predicts if the current year will have a bloom (the occurrence model), and another predicts bloom persistence (the persistence model).
View Article and Find Full Text PDFInterest in developing periphytic diatom and bacterial indicators of nutrient effects continues to grow in support of the assessment and management of stream ecosystems and their watersheds. However, temporal variability could confound relationships between indicators and nutrients, subsequently affecting assessment outcomes. To document how temporal variability affects measures of diatom and bacterial assemblages obtained from DNA metabarcoding, we conducted weekly periphyton and nutrient sampling from July to October 2016 in 25 streams in a 1293 km mixed land use watershed.
View Article and Find Full Text PDFCyanobacterial blooms are expected to intensify and become more widespread with climate change and sustained nutrient pollution, subsequently increasing threats to lentic ecosystems, water quality, and human health. However, little is known about their rates of change because long-term monitoring data are rare, except for some well-studied individual lakes, which typically are large and broadly dispersed geographically. Using monitoring data spanning 1987-2018 for 20 temperate reservoirs located in the USA, we found that cyanobacteria cell densities mostly posed low-to-moderate human health risks until 2003-2005, after which cell densities rapidly increased.
View Article and Find Full Text PDFNutrient pollution from human activities remains a common problem facing stream ecosystems. Identifying ecological responses to phosphorus and nitrogen can inform decisions affecting the protection and management of streams and their watersheds. Diatoms are particularly useful because they are a highly diverse group of unicellular algae found in nearly all aquatic environments and are sensitive responders to increased nutrient concentrations.
View Article and Find Full Text PDFWatershed integrity, the capacity of a watershed to support and maintain ecological processes essential to the sustainability of services provided to society, can be influenced by a range of landscape and in-stream factors. Ecological response data from four intensively monitored case study watersheds exhibiting a range of environmental conditions and landscape characteristics across the United States were used to evaluate the performance of a national level Index of Watershed Integrity (IWI) at regional and local watershed scales. Using Pearson's correlation coefficient (), and Spearman's rank correlation coefficient ( ), response variables displayed highly significant relationships and were significantly correlated with IWI and ICI (Index of Catchment Integrity) values at all watersheds.
View Article and Find Full Text PDFSpatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally-available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally-available spatial data could be improved by including local watershed-specific data in the East Fork of the Little Miami River, Ohio, a 1290 km watershed.
View Article and Find Full Text PDFLow Impact Development (LID) is an alternative to conventional urban stormwater management practices, which aims at mitigating the impacts of urbanization on water quantity and quality. Plot and local scale studies provide evidence of LID effectiveness; however, little is known about the overall watershed scale influence of LID practices. This is particularly true in watersheds with a land cover that is more diverse than that of urban or suburban classifications alone.
View Article and Find Full Text PDFWater quality trading (WQT) has potential to be a low-cost means for achieving water quality goals. WQT allows regulated wastewater treatment plants (WWTPs) facing discharge limits the flexibility to either reduce their own discharge or purchase pollution control from other WWTPs or nonpoint sources (NPSs) such as agricultural producers. Under this limited scope, programs with NPSs have been largely unsuccessful at meeting water quality goals.
View Article and Find Full Text PDFUrban stormwater runoff quantity and quality are strongly dependent upon catchment properties. Models are used to simulate the runoff characteristics, but the output from a stormwater management model is dependent on how the catchment area is subdivided and represented as spatial elements. For green infrastructure modeling, we suggest a discretization method that distinguishes directly connected impervious area from the total impervious area.
View Article and Find Full Text PDFReservoirs are a globally significant source of methane (CH) to the atmosphere. However, emission rate estimates may be biased low due to inadequate monitoring during brief periods of elevated emission rates (that is, hot moments). Here we investigate CH bubbling (that is, ebullition) during periods of falling water levels in a eutrophic reservoir in the Midwestern USA.
View Article and Find Full Text PDFPart of the ecological risk assessment process involves examining the potential for environmental stressors and ecological receptors to co-occur across a landscape. In this study, we introduce a Bayesian joint modeling framework for use in evaluating and mapping the co-occurrence of stressors and receptors using empirical data, open-source statistical software, and Geographic Information Systems tools and data. To illustrate the approach, we apply the framework to bioassessment data on stream fishes and nutrients collected from a watershed in southwestern Ohio.
View Article and Find Full Text PDFAnthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations.
View Article and Find Full Text PDFReservoirs are a globally significant source of methane (CH4), although most measurements have been made in tropical and boreal systems draining undeveloped watersheds. To assess the magnitude of CH4 emissions from reservoirs in midlatitude agricultural regions, we measured CH4 and carbon dioxide (CO2) emission rates from William H. Harsha Lake (Ohio, U.
View Article and Find Full Text PDFTriclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is an antimicrobial found in consumer soaps and toothpaste. It is in treated wastewater effluents at low parts-per-billion concentrations, representing a potentially chronic exposure condition for biota inhabiting receiving streams. For the present study, a naturally colonized benthos was created using flow-through indoor mesocosms; then, the benthic communities were dosed to achieve different in-stream triclosan concentrations (control, 0.
View Article and Find Full Text PDFSignificant amounts of antibiotics enter the environment via point and nonpoint sources. We examined the temporal dynamics of tetracycline exposure to stream periphyton and associated organisms across a logarithmically dosed-series of experimental mesocosms, designed to mimic natural conditions. Target in-stream tetracycline exposures were based on environmentally relevant concentrations in aquatic ecosystems throughout the United States (<1-100 μg L(-1)).
View Article and Find Full Text PDFDiffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters.
View Article and Find Full Text PDF