Dysregulation of PI3K/PTEN pathway components, resulting in hyperactivated PI3K signaling, is frequently observed in various cancers and correlates with tumor growth and survival. Resistance to a variety of anticancer therapies, including receptor tyrosine kinase (RTK) inhibitors and chemotherapeutic agents, has been attributed to the absence or attenuation of downregulating signals along the PI3K/PTEN pathway. Thus, PI3K inhibitors have therapeutic potential as single agents and in combination with other therapies for a variety of cancer indications.
View Article and Find Full Text PDFActivation of the PI3K (phosphoinositide 3-kinase) pathway is a frequent occurrence in human tumors and is thought to promote growth, survival, and resistance to diverse therapies. Here, we report pharmacologic characterization of the pyridopyrimidinone derivative XL765 (SAR245409), a potent and highly selective pan inhibitor of class I PI3Ks (α, β, γ, and δ) with activity against mTOR. Broad kinase selectivity profiling of >130 protein kinases revealed that XL765 is highly selective for class I PI3Ks and mTOR over other kinases.
View Article and Find Full Text PDFPurpose: Agents inhibiting the epidermal growth factor receptor (EGFR) have shown clinical benefit in a subset of non-small cell lung cancer patients expressing amplified or mutationally activated EGFR. However, responsive patients can relapse as a result of selection for EGFR gene mutations that confer resistance to ATP competitive EGFR inhibitors, such as erlotinib and gefitinib. We describe here the activity of EXEL-7647 (XL647), a novel spectrum-selective kinase inhibitor with potent activity against the EGF and vascular endothelial growth factor receptor tyrosine kinase families, against both wild-type (WT) and mutant EGFR in vitro and in vivo.
View Article and Find Full Text PDF