Publications by authors named "Christopher T Dewberry"

Aqueous pyridine plays an important role in a variety of catalytic processes aimed at harnessing solar energy. In this work, the pyridine-water interaction is studied by microwave spectroscopy and density functional theory calculations. Water forms a hydrogen bond to the nitrogen with the oxygen tilted slightly toward either of the ortho-hydrogens of the pyridine, and a tunneling motion involving in-plane rocking of the water interconverts the resulting equivalent structures.

View Article and Find Full Text PDF

The reactions of amines and carboxylic acids have recently received attention for their possible role in the formation of atmospheric aerosol. Here, we report a microwave study of the trimethylamine-formic acid hydrogen-bonded complex, a simple prototype in which to study amine-carboxylic acid interactions. Spectra of three isotopologues of the system have been observed using a tandem cavity and chirped-pulse Fourier transform microwave spectrometer.

View Article and Find Full Text PDF

a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and (14)N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH-NC5H5 does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C2 axis of the pyridine.

View Article and Find Full Text PDF

We report the observation of a covalently bound species, formic sulfuric anhydride (FSA), that is produced from formic acid and sulfur trioxide under supersonic jet conditions. FSA has been structurally characterized by means of microwave spectroscopy and further investigated by using density functional theory and ab initio calculations. Theory indicates that a π2 + π2 + σ2 cycloaddition reaction between SO3 and HCOOH is a plausible pathway to FSA formation and that such a mechanism would be effectively barrierless.

View Article and Find Full Text PDF

3D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3D printing to the design and construction of supersonic nozzles. Nozzles can be created for $0.

View Article and Find Full Text PDF

Rotational spectra are reported for seven isotopologues of the complex HCOOH-HNO3 in a supersonic jet. The system is planar and bound by a pair of hydrogen bonds, much like the more widely studied carboxylic acid dimers. Double proton exchange interconverts the system between a pair of equivalent structures, as revealed by a splitting of the a-type spectrum that disappears when one of the hydrogen bonding protons is replaced by deuterium.

View Article and Find Full Text PDF

Hyperfine structures arising from the couplings of the nuclear spin angular momentum of (17)O (I = 5/2) with the end over end rotation of several metal-containing diatomic monoxides have been observed using a Fourier transform microwave spectrometer. The molecules have been produced by reacting (17)O(2) with laser ablated metal atoms. The oxygen-17 nuclear quadrupole coupling constants have been determined for the title molecules and are interpreted in terms of a simple Townes-Dailey model.

View Article and Find Full Text PDF

The J = 1-0 pure rotational transition, together with hyperfine structure where appropriate, has been recorded for all three naturally occurring isotopomers of the actinide-containing compound thorium monoxide ((232)Th(16)O, (232)Th(17)O and (232)Th(18)O).

View Article and Find Full Text PDF

The ablation of metal surfaces in the presence of a precursor gas produces reaction products which are often difficult to predict and highly dependent on ablation conditions. This article describes the successful development and implementation of a laser ablation source-equipped Fourier transform microwave spectrometer capable of observing 4 GHz regions of spectra in a single data acquisition event. The dramatically increased speed with which regions may be searched, when compared to other high resolution microwave techniques, allows the source conditions to be the prime variable in laser ablation microwave spectroscopic studies.

View Article and Find Full Text PDF