Publications by authors named "Christopher Stromblad"

Determining the optimal surgical case start times is a challenging stochastic optimization problem that shares a key feature with many other healthcare operations problems. Namely, successful problem solutions require using a vast array of available historical data to create distributions that accurately capture a case duration's uncertainty for integration into an optimization model. Distribution fitting is the conventional approach to generate these distributions, but it can only employ a limited, aggregate portion of the detailed patient features available in Electronic Medical Records systems today.

View Article and Find Full Text PDF

Importance: Accurate surgical scheduling affects patients, clinical staff, and use of physical resources. Although numerous retrospective analyses have suggested a potential for improvement, the real-world outcome of implementing a machine learning model to predict surgical case duration appears not to have been studied.

Objectives: To assess accuracy and real-world outcome from implementation of a machine learning model that predicts surgical case duration.

View Article and Find Full Text PDF

Background: Transitional care interventions can be utilized to reduce post-hospital discharge adverse events (AEs). However, no methodology exists to effectively identify high-risk patients of any disease across multiple hospital sites and patient populations for short-term postdischarge AEs.

Objectives: To develop and validate a 3-day (72 h) AEs prediction model using electronic health records data available at the time of an indexed discharge.

View Article and Find Full Text PDF

The ability to accurately measure and assess current and potential health care system capacities is an issue of local and national significance. Recent joint statements by the Institute of Medicine and the Agency for Healthcare Research and Quality have emphasized the need to apply industrial and systems engineering principles to improving health care quality and patient safety outcomes. To address this need, a decision support tool was developed for planning and budgeting of current and future bed capacity, and evaluating potential process improvement efforts.

View Article and Find Full Text PDF