BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.
View Article and Find Full Text PDFWe describe how increased root cortical parenchyma wall width (CPW) can improve tolerance to drought stress in maize by reducing the metabolic costs of soil exploration. Significant variation (1.0-5.
View Article and Find Full Text PDFCassava brown streak disease (CBSD) poses a substantial threat to food security. To address this challenge, we used PlantCV to extract CBSD root necrosis image traits from 320 clones, with an aim of identifying genomic regions through genome-wide association studies (GWAS) and candidate genes. Results revealed strong correlations among certain root necrosis image traits, such as necrotic area fraction and necrotic width fraction, as well as between the convex hull area of root necrosis and the percentage of necrosis.
View Article and Find Full Text PDFThree series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines.
View Article and Find Full Text PDFInflorescence structure is very diverse and homoplasious, yet the developmental basis of their homoplasy is poorly understood. To gain an understanding of the degree of homology that these diverse structures share, we characterize the developmental morphology and anatomy of various umbellate inflorescences across the monocots and analyzed them in an evolutionary context. To characterize branching order, we characterized the developmental morphology of multiple inflorescences with epi-illumination, and vascular anatomy with Laser Ablation Tomography, a novel high-throughput method to reconstruct three-dimensional vasculature.
View Article and Find Full Text PDFAnatomics is a novel phenotyping strategy focused on high-throughput imaging and quantification of plant anatomy from field-grown plants. Here we highlight its potential applications for genetic and physiological analysis of plant anatomical phenotypes.
View Article and Find Full Text PDFBackground And Aims: Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies.
Methods: We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth.
Mechanical impedance constrains root growth in most soils. Crop cultivation changed the impedance characteristics of native soils, through topsoil erosion, loss of organic matter, disruption of soil structure and loss of biopores. Increasing adoption of Conservation Agriculture in high-input agroecosystems is returning cultivated soils to the soil impedance characteristics of native soils, but in the low-input agroecosystems characteristic of developing nations, ongoing soil degradation is generating more challenging environments for root growth.
View Article and Find Full Text PDFBackground And Aims: The utility of root hairs for nitrogen (N) acquisition is poorly understood.
Methods: We explored the utility of root hairs for N acquisition in the functional-structural model SimRoot and with maize genotypes with variable root hair length (RHL) in greenhouse and field environments.
Key Results: Simulation results indicate that long, dense root hairs can improve N acquisition under varying N availability.
Proc Natl Acad Sci U S A
February 2021
Mechanical impedance limits soil exploration and resource capture by plant roots. We examine the role of root anatomy in regulating plant adaptation to mechanical impedance and identify a root anatomical phene in maize () and wheat () associated with penetration of hard soil: Multiseriate cortical sclerenchyma (MCS). We characterize this trait and evaluate the utility of MCS for root penetration in compacted soils.
View Article and Find Full Text PDFResistance conferred by the Cre8 locus of wheat prevents cereal cyst nematode feeding sites from reaching and invading root metaxylem vessels. Cyst nematodes develop syncytial feeding sites within plant roots. The success of these sites is affected by host plant resistance.
View Article and Find Full Text PDFAt the genus and species level, variation in root anatomy and architecture may interact to affect strategies of drought avoidance. To investigate this idea, root anatomy and architecture of the drought-sensitive common bean (Phaseolus vulgaris) and drought-adapted tepary bean (Phaseolus acutifolius) were analyzed in relation to water use under terminal drought. Intraspecific variation for metaxylem anatomy and axial conductance was found in the roots of both species.
View Article and Find Full Text PDFBackground And Aims: Despite recent progress in elucidating the molecular basis of secondary growth (cambial growth), the functional implications of this developmental process remain poorly understood. Targeted studies exploring how abiotic and biotic factors affect this process, as well as the relevance of secondary growth to fitness of annual dicotyledonous crop species under stress, are almost entirely absent from the literature. Specifically, the physiological role of secondary growth in roots has been completely neglected yet entails a unique array of implications for plant performance that are distinct from secondary growth in shoot tissue.
View Article and Find Full Text PDFProstate cancer is the leading cause of cancer and second leading cause of cancer-related death in men in the United States. Twenty percent of patients receiving the standard of care androgen deprivation therapy (ADT) eventually progress to metastatic and incurable castration-resistant prostate cancer (CRPC). Current FDA-approved drugs for CRPC target androgen receptor (AR) binding or androgen production, but only provide a 2- to 5-month survival benefit due to the emergence of resistance.
View Article and Find Full Text PDFSoil biota have important effects on crop productivity, but can be difficult to study in situ. Laser ablation tomography (LAT) is a novel method that allows for rapid, three-dimensional quantitative and qualitative analysis of root anatomy, providing new opportunities to investigate interactions between roots and edaphic organisms. LAT was used for analysis of maize roots colonized by arbuscular mycorrhizal fungi, maize roots herbivorized by western corn rootworm, barley roots parasitized by cereal cyst nematode, and common bean roots damaged by Fusarium.
View Article and Find Full Text PDFNeurotoxicity and seizurogenic liabilities are difficult to detect using currently available in vitro cytotoxicity assays. This is primarily due to the inherent limitations of these assays to predict adverse neural network disruptions and chemically induced perturbations. Many of these detrimental effects are detected with in vivo studies after substantial time and monetary resources have already been invested.
View Article and Find Full Text PDFTwenty percent of prostate cancer (PCa) patients develop a noncurable drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC). Overexpression of Androgen Receptor (AR) coactivators such as transcriptional intermediary factor 2 (TIF2) is associated with poor CRPC patient outcomes. We describe the implementation of the AR-TIF2 protein-protein interaction biosensor (PPIB) assay in a high-content screening (HCS) campaign of 143,535 compounds.
View Article and Find Full Text PDFDrug-induced seizure liabilities produce significant compound attrition during drug discovery. Currently available in vitro cytotoxicity assays cannot predict all toxicity mechanisms due to the failure of these assays to predict sublethal target-specific electrophysiological liabilities. Identification of seizurogenic and other electrophysiological effects at early stages of the drug development process is important to ensure that safe candidate compounds can be developed while chemical design is taking place, long before these liabilities are discovered in costly preclinical in vivo studies.
View Article and Find Full Text PDFWe tested the hypothesis that reduced root secondary growth of dicotyledonous species improves phosphorus acquisition. Functional-structural modeling in SimRoot indicates that, in common bean (), reduced root secondary growth reduces root metabolic costs, increases root length, improves phosphorus capture, and increases shoot biomass in low-phosphorus soil. Observations from the field and greenhouse confirm that, under phosphorus stress, resource allocation is shifted from secondary to primary root growth, genetic variation exists for this response, and reduced secondary growth improves phosphorus capture from low-phosphorus soil.
View Article and Find Full Text PDFTranscriptional Intermediary Factor 2 (TIF2) is a key Androgen receptor (AR) coactivator that has been implicated in the development and progression of castration resistant prostate cancer (CRPC). This chapter describes the implementation of an AR-TIF2 protein-protein interaction (PPI) biosensor assay to screen for small molecules that can induce AR-TIF2 PPIs, inhibit the DHT-induced formation of AR-TIF2 PPIs, or disrupt pre-existing AR-TIF2 PPIs. The biosensor assay employs high content imaging and analysis to quantify AR-TIF2 PPIs and integrates physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information from AR and TIF2 functional domains along with intracellular targeting sequences using fluorescent protein reporters.
View Article and Find Full Text PDFDrug-drug interactions pose a difficult drug safety problem, given the increasing number of individuals taking multiple medications and the relative complexity of assessing the potential for interactions. For example, sofosbuvir-based drug treatments have significantly advanced care for hepatitis C virus-infected patients, yet recent reports suggest interactions with amiodarone may cause severe symptomatic bradycardia and thus limit an otherwise extremely effective treatment. Here, we evaluated the ability of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) to recapitulate the interaction between sofosbuvir and amiodarone in vitro, and more generally assessed the feasibility of hiPSC-CMs as a model system for drug-drug interactions.
View Article and Find Full Text PDFConjugated hyperbilirubinemia accompanied by cholestasis is a frequent side effect during chronic treatment with the antimicrobial agent fusidic acid. Previous studies from our laboratory, addressing mechanisms of musculoskeletal toxicity arising from coadministration of fusidic acid with statins, demonstrated the ability of fusidic acid to potently inhibit human organic anion transporting polypeptides OATP1B1 (IC = 1.6 μM) and OATP1B3 (IC = 2.
View Article and Find Full Text PDFThe continued activation of androgen receptor (AR) transcription and elevated expression of AR and transcriptional intermediary factor 2 (TIF2) coactivator observed in prostate cancer (CaP) recurrence and the development of castration-resistant CaP (CRPC) support a screening strategy for small-molecule inhibitors of AR-TIF2 protein-protein interactions (PPIs) to find new drug candidates. Small molecules can elicit tissue selective effects, because the cells of distinct tissues express different levels and cohorts of coregulatory proteins. We reconfigured the AR-TIF2 PPI biosensor (PPIB) assay in the PC-3 CaP cell line to determine whether AR modulators and hits from an AR-TIF2 PPIB screen conducted in U-2 OS cells would behave differently in the CaP cell background.
View Article and Find Full Text PDFThe connections leading from genotype to fitness are not well understood, yet they are crucial for a diverse set of disciplines. Uncovering the general properties of biochemical pathways that influence ecologically important traits is an effective way to understand these connections. Enzyme flux control (or, control over pathway output) is one such pathway property.
View Article and Find Full Text PDF