Background: The Na1.8 voltage-gated sodium channel, expressed in peripheral nociceptive neurons, plays a role in transmitting nociceptive signals. The effect of VX-548, an oral, highly selective inhibitor of Na1.
View Article and Find Full Text PDFBackground: Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and nearly 90% of patients have at least one copy of the Phe508del mutation. In a phase 2 trial involving patients who were heterozygous for the Phe508del mutation and a minimal-function mutation (Phe508del-minimal function genotype), the next-generation CFTR corrector elexacaftor, in combination with tezacaftor and ivacaftor, improved Phe508del CFTR function and clinical outcomes.
Methods: We conducted a phase 3, randomized, double-blind, placebo-controlled trial to confirm the efficacy and safety of elexacaftor-tezacaftor-ivacaftor in patients 12 years of age or older with cystic fibrosis with Phe508del-minimal function genotypes.
Lancet
November 2019
Background: Cystic fibrosis transmembrane conductance regulator (CFTR) modulators correct the basic defect caused by CFTR mutations. Improvements in health outcomes have been achieved with the combination of a CFTR corrector and potentiator in people with cystic fibrosis homozygous for the F508del mutation. The addition of elexacaftor (VX-445), a next-generation CFTR corrector, to tezacaftor plus ivacaftor further improved F508del-CFTR function and clinical outcomes in a phase 2 study in people with cystic fibrosis homozygous for the F508del mutation.
View Article and Find Full Text PDFBackground: Ivacaftor is the first in a class of drugs, CFTR modulators, that target the underlying defect in cystic fibrosis (CF). This long-term observational safety study evaluated CF disease progression in patients treated with ivacaftor in a real-world setting for up to 5 years.
Methods: Data from existing US and UK CF patient registries were used to assess longitudinal patterns in lung function, nutritional status, pulmonary exacerbations and hospitalizations, CF-related diabetes (CFRD), and Pseudomonas aeruginosa in ivacaftor-treated vs untreated comparator cohorts matched by age, sex, and disease severity.
Background: The next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector VX-659, in triple combination with tezacaftor and ivacaftor (VX-659-tezacaftor-ivacaftor), was developed to restore the function of Phe508del CFTR protein in patients with cystic fibrosis.
Methods: We evaluated the effects of VX-659-tezacaftor-ivacaftor on the processing, trafficking, and function of Phe508del CFTR protein using human bronchial epithelial cells. A range of oral VX-659-tezacaftor-ivacaftor doses in triple combination were then evaluated in randomized, controlled, double-blind, multicenter trials involving patients with cystic fibrosis who were heterozygous for the Phe508del CFTR mutation and a minimal-function CFTR mutation (Phe508del-MF genotypes) or homozygous for the Phe508del CFTR mutation (Phe508del-Phe508del genotype).
Background: VX-445 is a next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector designed to restore Phe508del CFTR protein function in patients with cystic fibrosis when administered with tezacaftor and ivacaftor (VX-445-tezacaftor-ivacaftor).
Methods: We evaluated the effects of VX-445-tezacaftor-ivacaftor on Phe508del CFTR protein processing, trafficking, and chloride transport in human bronchial epithelial cells. On the basis of in vitro activity, a randomized, placebo-controlled, double-blind, dose-ranging, phase 2 trial was conducted to evaluate oral VX-445-tezacaftor-ivacaftor in patients heterozygous for the Phe508del CFTR mutation and a minimal-function mutation (Phe508del-MF) and in patients homozygous for the Phe508del CFTR mutation (Phe508del-Phe508del) after tezacaftor-ivacaftor run-in.
Background: Ivacaftor is the first cystic fibrosis transmembrane conductance regulator (CFTR) modulator demonstrating clinical benefit in patients with cystic fibrosis (CF). As ivacaftor is intended for chronic, lifelong use, understanding long-term effects is important for patients and healthcare providers.
Objective: This ongoing, observational, postapproval safety study evaluates clinical outcomes and disease progression in ivacaftor-treated patients using data from the US and the UK CF registries following commercial availability.
Background: Combination treatment with the cystic fibrosis transmembrane conductance regulator (CFTR) modulators tezacaftor (VX-661) and ivacaftor (VX-770) was designed to target the underlying cause of disease in patients with cystic fibrosis.
Methods: In this phase 3, randomized, double-blind, multicenter, placebo-controlled, parallel-group trial, we evaluated combination therapy with tezacaftor and ivacaftor in patients 12 years of age or older who had cystic fibrosis and were homozygous for the CFTR Phe508del mutation. Patients were randomly assigned in a 1:1 ratio to receive either 100 mg of tezacaftor once daily and 150 mg of ivacaftor twice daily or matched placebo for 24 weeks.
Background: Cystic fibrosis is an autosomal recessive disease caused by mutations in the CFTR gene that lead to progressive respiratory decline. Some mutant CFTR proteins show residual function and respond to the CFTR potentiator ivacaftor in vitro, whereas ivacaftor alone does not restore activity to Phe508del mutant CFTR.
Methods: We conducted a randomized, double-blind, placebo-controlled, phase 3, crossover trial to evaluate the efficacy and safety of ivacaftor alone or in combination with tezacaftor, a CFTR corrector, in 248 patients 12 years of age or older who had cystic fibrosis and were heterozygous for the Phe508del mutation and a CFTR mutation associated with residual CFTR function.