To get the best possible results from current quantum devices error mitigation is essential. In this work we present a simple but effective error mitigation technique based on the assumption that noise in a deep quantum circuit is well described by global depolarizing error channels. By measuring the errors directly on the device, we use an error model ansatz to infer error-free results from noisy data.
View Article and Find Full Text PDFGoodpasture's disease manifests as rapidly progressive glomerulonephritis. Current immunosuppressive treatments do not specifically target the pathological immune response and have significant side effects. Like most autoimmune diseases, the strongest genetic association is with the HLA alleles.
View Article and Find Full Text PDFThe strong association of HLA-DR2b (DRB1*1501) with multiple sclerosis (MS) suggests this molecule as prime target for specific immunotherapy. Inhibition of HLA-DR2b-restricted myelin-specific T cells has the potential to selectively prevent CNS pathology mediated by these MHC molecules without undesired global immunosuppression. In this study, we report development of a highly selective small molecule inhibitor of peptide binding and presentation by HLA-DR2b.
View Article and Find Full Text PDFChk2 (checkpoint kinase 2) is a serine/threonine kinase that participates in a series of signaling networks responsible for maintaining genomic integrity and responding to DNA damage. The development of selective Chk2 inhibitors has recently attracted much interest as a means of sensitizing cancer cells to current DNA-damaging agents used in the treatment of cancer. Additionally, selective Chk2 inhibitors may reduce p53-mediated apoptosis in normal tissues, thereby helping to mitigate adverse side effects from chemotherapy and radiation.
View Article and Find Full Text PDFThe serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding region of the ATP-binding site. These compounds exhibit IC(50) values in the low nanomolar range and are highly selective for Chk2 over Chk1.
View Article and Find Full Text PDFLocalization of protein kinase A (PKA) via A-kinase-anchoring proteins (AKAPs) is important for cAMP responsiveness in many cellular systems, and evidence suggests that AKAPs play an important role in cardiac signaling. To test the importance of AKAP-mediated targeting of PKA on cardiac function, we designed a cell-permeable peptide, which we termed trans-activator of transcription (TAT)-AKAD for TAT-conjugated A-kinase-anchoring disruptor, using the PKA binding region of AKAP10 and tested the effects of this peptide in isolated cardiac myocytes and in Langendorff-perfused mouse hearts. We initially validated TAT-AKAD as a PKA localization inhibitor in cardiac myocytes by the use of confocal microscopy and cellular fractionation to show that treatment with the peptide disrupts type I and type II PKA regulatory subunits.
View Article and Find Full Text PDFInhibition of methionine aminopeptidase-2 (MetAP2) represents a novel approach to antiangiogenic therapy. We describe the synthesis and activity of fumagillin analogues that address the pharmacokinetic and safety liabilities of earlier candidates in this compound class. Two-step elaboration of fumagillol with amines yielded a diverse series of carbamates at C6 of the cyclohexane spiroepoxide.
View Article and Find Full Text PDFChk2 is a checkpoint kinase involved in the ataxia telangiectasia mutated pathway, which is activated by genomic instability and DNA damage, leading to either cell death (apoptosis) or cell cycle arrest. Chk2 provides an unexplored therapeutic target against cancer cells. We recently reported 4,4'-diacetyldiphenylurea-bis(guanylhydrazone) (NSC 109555) as a novel chemotype Chk2 inhibitor.
View Article and Find Full Text PDFPolyglutamine protein aggregates are a hallmark of several neurodegenerative diseases, including Huntington's disease, and increasing evidence suggests that reducing or inhibiting aggregation produces a therapeutic benefit in animal models of disease. Part of the challenge in designing compounds that interfere with protein aggregation is having a sensitive and consistent in vitro assay that allows for efficient screening and lead optimization. Here we describe a simplified polyglutamine assay that uses a soluble, pathological-length polyglutamine construct (62 glutamines [Q62]) fused to glutathione-S-transferase (GST) and measure aggregate formation with fluorescence generated by thioflavin T binding.
View Article and Find Full Text PDF