Publications by authors named "Christopher S. Burgey"

A novel series of 3-amino-piperidin-2-one-based calcitonin gene-related peptide (CGRP) receptor antagonists was invented based upon the discovery of unexpected structure-activity observations. Initial exploration of the structure-activity relationships enabled the generation of a moderately potent lead structure (4). A series of modifications, including ring contraction and inversion of stereocenters, led to surprising improvements in CGRP receptor affinity.

View Article and Find Full Text PDF

Background: The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis.

Methods: and studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity.

View Article and Find Full Text PDF

Cathepsin K (Cat K) is a cysteine protease involved in bone remodeling. In addition to its role in bone biology, Cat K is upregulated in osteoclasts, chondrocytes and synoviocytes in osteoarthritic (OA) disease states making it a potential therapeutic target for disease-modifying OA. Starting from a prior preclinical compound, MK-1256, lead optimization efforts were carried out in the search for potent Cat K inhibitors with improved selectivity profiles with an emphasis on cathepsin F.

View Article and Find Full Text PDF

MK-2075 is a small-molecule selective inhibitor of the NaV1.7 channel investigated for the treatment of postoperative pain. A translational strategy was developed for MK-2075 to quantitatively interrelate drug exposure, target modulation, and the desired pharmacological response in preclinical animal models for the purpose of human translation.

View Article and Find Full Text PDF

Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels . The article describes the design of analogues of ProTx-II that safely display systemic blocking of Na1.7, resulting in a latency of response to thermal stimuli in rodents.

View Article and Find Full Text PDF

The voltage-gated sodium channel Na1.7 continues to be a high-profile target for the treatment of various pain afflictions due to its strong human genetic validation. While isoform selective molecules have been discovered and advanced into the clinic, to date, this target has yet to bear fruit in the form of marketed therapeutics for the treatment of pain.

View Article and Find Full Text PDF

Humans with loss-of-function mutations in the Na1.7 channel gene (SCN9A) show profound insensitivity to pain, whereas those with gain-of-function mutations can have inherited pain syndromes. Therefore, inhibition of the Na1.

View Article and Find Full Text PDF

Purpose: This work describes a staged approach to the application of pharmacokinetic-pharmacodynamic (PK-PD) modeling in the voltage-gated sodium ion channel (NaV1.7) inhibitor drug discovery effort to address strategic questions regarding in vitro to in vivo translation of target modulation.

Methods: PK-PD analysis was applied to data from a functional magnetic resonance imaging (fMRI) technique to non-invasively measure treatment mediated inhibition of olfaction signaling in non-human primates (NHPs).

View Article and Find Full Text PDF

A growing body of evidence has implicated the calcitonin gene-related peptide (CGRP) receptors in migraine pathophysiology. With the recent approval of monoclonal antibodies targeting CGRP or the CGRP receptor, the inhibition of CGRP-mediated signaling has emerged as a promising approach for preventive treatments of migraine in adults. However, there are no small-molecule anti-CGRP treatments available for treating migraine.

View Article and Find Full Text PDF

A second-generation small molecule P2X3 receptor antagonist has been developed. The lead optimization strategy to address shortcomings of the first-generation preclinical lead compound is described herein. These studies were directed towards the identification and amelioration of preclinical hepatobiliary findings, reducing potential for drug-drug interactions, and decreasing the projected human dose of the first-generation lead.

View Article and Find Full Text PDF

In our efforts to develop CGRP receptor antagonists as backups to MK-3207, 2, we employed a scaffold hopping approach to identify a series of novel oxazolidinone-based compounds. The development of a structurally diverse, potent (20, cAMP+HS IC50=0.67 nM), and selective compound (hERG IC50=19 μM) with favorable rodent pharmacokinetics (F=100%, t1/2=7h) is described.

View Article and Find Full Text PDF

A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects.

View Article and Find Full Text PDF

A novel series of decahydroquinoline CB2 agonists is described. Optimization of the amide substituent led to improvements in CB2/CB1 selectivity as well as physical properties. Two key compounds were examined in the rat CFA model of acute inflammatory pain.

View Article and Find Full Text PDF

In our ongoing efforts to develop CGRP receptor antagonists for the treatment of migraine, we aimed to improve upon telecagepant by targeting a compound with a lower projected clinical dose. Imidazoazepanes were identified as potent caprolactam replacements and SAR of the imidazole yielded the tertiary methyl ether as an optimal substituent for potency and hERG selectivity. Combination with the azabenzoxazinone spiropiperidine ultimately led to preclinical candidate 30 (MK-2918).

View Article and Find Full Text PDF

Several novel spiropiperidine-based CGRP receptor antagonists have been developed that maintain good potency and have reduced potential for metabolism.

View Article and Find Full Text PDF

The palladium-catalyzed Suzuki-Miyaura reaction has been utilized as one of the most powerful methods for C-C bond formation. However, Suzuki reactions of electron-deficient 2-heterocyclic boronates generally give low conversions and remain challenging. The successful copper(I) facilitated Suzuki coupling of 2-heterocyclic boronates that is broad in scope is reported.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is a neuropeptide that plays a key role in the pathophysiology of migraine headache. MK-0974 (telcagepant) is a potent and selective antagonist of the human and rhesus CGRP receptors and is currently in Phase III clinical studies for the acute treatment of migraine. The pharmacology of MK-0974 has been studied extensively, but there has not been a thorough characterization of its binding properties.

View Article and Find Full Text PDF
Article Synopsis
  • Two new methods have been created to synthesize a specific CGRP receptor antagonist, telcagepant (MK-0974).
  • The first method uses a ring-closing metathesis process with styrene as a crucial step, while the second method involves a selective Rh-catalyzed reaction to add arylboronic acid to a nitroalkene.
  • The second route has been successfully used to produce large amounts of telcagepant for thorough preclinical testing.
View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide that plays a key role in the pathophysiology of migraine headache. CGRP levels in the cranial circulation are increased during a migraine attack, and CGRP itself has been shown to trigger migraine-like headache. The correlation between CGRP release and migraine headache points to the potential utility of CGRP receptor antagonists as novel therapeutics in the treatment of migraine.

View Article and Find Full Text PDF

In our effort to find potent, orally bioavailable CGRP receptor antagonists for the treatment of migraine, a novel series based on a pyridinone template was investigated. After optimizing the privileged structure and the placement of the attached phenyl ring, systematic SAR was carried out on both the N-alkyl and C-5 aryl substituents. Several analogs with good potency and pharmacokinetic profiles were identified.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Herein we describe optimization of CGRP receptor antagonists based on an earlier lead structure containing a (3R)-amino-(6S)-phenylcaprolactam core. Replacement of the phenylimidazolinone with an azabenzimidazolone gave stable derivatives with lowered serum shifts.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Replacements for the benzodiazepine core of an earlier lead structure 1 including 5-, 6-, and 7-membered lactams were explored. Within the 7-membered ring scaffold, phenyl substitution at various positions afforded the potent (3R)-amino-(6S)-phenyl caprolactam template.

View Article and Find Full Text PDF

In our continuing effort to identify CGRP receptor antagonists for the acute treatment of migraine, we have undertaken a study to evaluate alternative 4-substituted piperidines to the lead dihydroquinazolinone 1. In this regard, we have identified the piperidinyl-azabenzimidazolone and phenylimidazolinone structures which, when incorporated into the benzodiazepine core, afford potent CGRP receptor antagonists (e.g.

View Article and Find Full Text PDF

Thrombin-inhibitor X-ray crystal structures, in combination with the installation of binding elements optimized within the pyrazinone series of thrombin inhibitors, were utilized to transform a weak triazolopyrimidine lead into a series of potent oxazolopyridines. A modification intended to attenuate plasma protein binding (i.e.

View Article and Find Full Text PDF