Publications by authors named "Christopher S Wilson"

The immune system of healthy individuals is capable of regulating autoimmunity through multiple mechanisms. In Type 1 Diabetes (T1D) we recently discovered natural IgM, although present at normal levels, is unable to perform its normal immunoregulatory function. Treating diabetic mice with IgM from healthy donors led to reversal of disease without immune depletion.

View Article and Find Full Text PDF

Autoimmune disease has presented an insurmountable barrier to restoration of durable immune tolerance. Previous studies indicate that chronic therapy with metabolic inhibitors can reduce autoimmune inflammation, but it remains unknown whether acute metabolic modulation enables permanent immune tolerance to be established. In an animal model of lupus, we determined that targeting glucose metabolism with 2-deoxyglucose (2DG) and mitochondrial metabolism with metformin enables endogenous immune tolerance mechanisms to respond to tolerance induction.

View Article and Find Full Text PDF

The purpose of this study was to assess insulin-stimulated gene expression in canine skeletal muscle with a particular focus on , the gene that encodes C-type natriuretic peptide, a key hormonal regulator of cardiometabolic function. Four conscious canines underwent hyperinsulinemic, euglycemic clamp studies. Skeletal muscle biopsy and arterial plasma samples were collected under basal and insulin-stimulated conditions.

View Article and Find Full Text PDF

Dinuclear metallodrugs offer much potential in the development of novel anticancer chemotherapeutics as a result of the distinct interactions possible with bio-macromolecular targets and the unique biological activity that can result. Herein, we describe the development of isostructural homo-dinuclear Os -Os and hetero-dinuclear Os -Ru organometallic complexes formed from linking the arene ligands of [M(η -arene)(C O )(PTA)] units (M=Os/Ru; PTA=1,3,5-triaza-7-phosphaadamantane). Using these complexes together with the known Ru -Ru analogue, a chromatin-modifying agent, we probed the impact of varying the metal ions on the structure, reactivity and biological activity of these complexes.

View Article and Find Full Text PDF

Unchecked collaboration between islet-reactive T and B lymphocytes drives type 1 diabetes (T1D). In the healthy setting, CD8 T regulatory cells (Tregs) terminate ongoing T-B interactions. We determined that specific CD8 Tregs from NOD mice lack suppressive function, representing a previously unreported regulatory cell deficit in this T1D-prone strain.

View Article and Find Full Text PDF

Imatinib (Gleevec) reverses type 1 diabetes (T1D) in NOD mice and is currently in clinical trials in individuals with recent-onset disease. While research has demonstrated that imatinib protects islet β cells from the harmful effects of ER stress, the role the immune system plays in its reversal of T1D has been less well understood, and specific cellular immune targets have not been identified. In this study, we demonstrate that B lymphocytes, an immune subset that normally drives diabetes pathology, are unexpectedly required for reversal of hyperglycemia in NOD mice treated with imatinib.

View Article and Find Full Text PDF

Autoimmune diseases such as type 1 diabetes (T1D) arise from unrestrained activation of effector lymphocytes that destroy target tissues. Many efforts have been made to eliminate these effector lymphocytes, but none has produced a long-term cure. An alternative to depletion therapy is to enhance endogenous immune regulation.

View Article and Find Full Text PDF

Disruption of the non-classical Major Histocompatibility Complex (MHC) Ib molecule Qa-1 impairs CD8 Treg and natural killer (NK) cell function and promotes a lupus-like autoimmune disease. This immune perturbation would be expected to enhance anti-transplant responses and impair tolerance induction, but the effect of Qa-1 deficiency on the transplant response has not been previously reported. Qa-1 deficiency enhanced CD4 TFH and germinal center (GC) B cell numbers in naïve mice and hastened islet allograft rejection.

View Article and Find Full Text PDF

Overcoming the immune response to establish durable immune tolerance in type 1 diabetes remains a substantial challenge. The ongoing effector immune response involves numerous immune cell types but is ultimately orchestrated and sustained by the hematopoietic stem cell (HSC) niche. We therefore hypothesized that tolerance induction also requires these pluripotent precursors.

View Article and Find Full Text PDF

Background: Interactions between genetic risk factors and the environment drive type 1 diabetes (T1D). The system of Toll-like receptors (TLR) detects these environmental triggers; however, the target cell that intermediates these interactions to drive T1D remains unknown.

Methods: We investigated the effect of TLR pathway activation (myeloid differentiation primary response 88 [MyD88] vs TIR-domain-containing adapter-inducing interferon-β [TRIF]) on B cell subsets via flow cytometry, including their activation, survival, proliferation, and cytoskeletal mobilization.

View Article and Find Full Text PDF

A series of trivalent lanthanide hydroxysulfates, Ln(OH)SO(4), (Ln = Pr through Yb, except radioactive Pm) has been synthesized via hydrothermal methods from Ln(2)(SO(4))(3)·8H(2)O by reaction with aqueous NaOH at 170 °C in Teflon lined Parr steel autoclaves, and were characterized by single crystal X-ray diffraction and FT-IR spectroscopy. Two types of arrangements were found in the solid state. The lighter (Ln = Pr-Nd, Sm-Gd) and heavier lanthanide(III) hydroxysulfates (Tb-Yb) are each isostructural.

View Article and Find Full Text PDF