Publications by authors named "Christopher S Sullivan"

Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'pppRNA generated during transcription and induce a RIG-I-mediated immune response.

View Article and Find Full Text PDF

PARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict.

View Article and Find Full Text PDF

The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa.

View Article and Find Full Text PDF

The concept of a nucleic acid barcode applied to pathogen genomes is easy to grasp and the many possible uses are straightforward. But implementation may not be easy, especially when growing through multiple generations or assaying the pathogen long-term. The potential problems include: the barcode might alter fitness, the barcode may accumulate mutations, and construction of the marked pathogens may result in unintended barcodes that are not as designed.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a conserved class of RNAs with diverse functions, including serving as messenger RNAs that are translated into peptides. Here we describe circular RNAs generated by human polyomaviruses (HPyVs), some of which encode variants of the previously described alternative large T antigen open reading frame (ALTO) protein. Circular ALTO RNAs (circALTOs) can be detected in virus positive Merkel cell carcinoma (VP-MCC) cell lines and tumor samples.

View Article and Find Full Text PDF

Deciphering the mechanisms that regulate the sensitivity of pathogen recognition receptors is imperative to understanding infection and inflammation. Here we demonstrate that the RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) acts on both host and virus-derived 5'-triphosphate RNAs rendering them less active in inducing a RIG-I-mediated immune response. Reducing DUSP11 levels alters host triphosphate RNA packaged in extracellular vesicles and induces enhanced RIG-I activation in cells exposed to extracellular vesicles.

View Article and Find Full Text PDF

Since the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there have been demands on the testing infrastructure that have strained testing capacity. As a simplification of method, we confirm the efficacy of RNA extraction-free RT-qPCR and saline as an alternative patient sample storage buffer. In addition, amongst potential reagent shortages, it has sometimes been difficult to obtain inactivated viral particles.

View Article and Find Full Text PDF

ADP-ribosylation is a ubiquitous post-translational addition of either monomers or polymers of ADP-ribose to target proteins by ADP-ribosyltransferases, usually by interferon-inducible diphtheria toxin-like enzymes known as PARPs. While several PARPs have known antiviral activities, these activities are mostly independent of ADP-ribosylation. Consequently, less is known about the antiviral effects of ADP-ribosylation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miRNAs have been described.

View Article and Find Full Text PDF
Article Synopsis
  • About 70% of people infected with hepatitis C virus (HCV) develop chronic infections, increasing their risk for severe liver disease, including cancer.
  • Research reveals that the DUSP11 enzyme makes HCV transcripts vulnerable to degradation by XRN exonucleases, which help combat HCV replication.
  • In cells that lack DUSP11, HCV replication increases significantly, and the role of the microRNA miR-122, which protects HCV transcripts, becomes less critical.
View Article and Find Full Text PDF

Polyomaviruses (PyVs) can cause serious disease in immunosuppressed hosts. Several pathogenic PyVs encode microRNAs (miRNAs), small RNAs that regulate gene expression via RNA silencing. Despite recent advances in understanding the activities of PyV miRNAs, the biological functions of PyV miRNAs during infections are mostly unknown.

View Article and Find Full Text PDF

Mouse mammary tumor virus (MMTV) induces breast cancer in mice in the absence of known virally-encoded oncogenes. Tumorigenesis by MMTV is thought to occur primarily through insertional mutagenesis, leading to the activation of cellular proto-oncogenes and outgrowth of selected cells. Here we investigated whether MMTV encodes microRNAs (miRNAs) and/or modulates host miRNAs that could contribute to tumorigenesis.

View Article and Find Full Text PDF

Short hairpin RNAs (shRNAs) are effective in generating stable repression of gene expression. RNA polymerase III (RNAP III) type III promoters (U6 or H1) are typically used to drive shRNA expression. While useful for some knockdown applications, the robust expression of U6/H1-driven shRNAs can induce toxicity and generate heterogeneous small RNAs with undesirable off-target effects.

View Article and Find Full Text PDF

Dual-specificity phosphatase 11 (DUSP11) is a conserved protein tyrosine phosphatase (PTP) in metazoans. The cellular substrates and physiologic activities of DUSP11 remain largely unknown. In nematodes, DUSP11 is required for normal development and RNA interference against endogenous RNAs (endo-RNAi) via molecular mechanisms that are not well understood.

View Article and Find Full Text PDF

RNA silencing is a conserved eukaryotic gene expression regulatory mechanism mediated by small RNAs. In Caenorhabditis elegans, the accumulation of a distinct class of siRNAs synthesized by an RNA-dependent RNA polymerase (RdRP) requires the PIR-1 phosphatase. However, the function of PIR-1 in RNAi has remained unclear.

View Article and Find Full Text PDF

Despite increasing interest in the biology of noncoding RNAs (ncRNAs), few functions have been uncovered for viral ncRNAs in vivo. In their recent article in mSphere, Feldman and colleagues [E. R.

View Article and Find Full Text PDF

Many eukaryotes and some viruses encode microRNAs (miRNAs), small RNAs that post-transcriptionally regulate gene expression. While most miRNAs are generated through the activity of RNA Polymerase II (RNAP II) and subsequent processing by Drosha and Dicer, some viral miRNAs utilize alternative pathways of biogenesis. Some members of the herpesvirus and retrovirus families can direct synthesis of miRNAs through RNAP III transcription rather than RNAP II and can utilize atypical enzymes to generate miRNAs.

View Article and Find Full Text PDF

Diverse viruses encode regulatory RNAs called microRNAs (miRNAs). Despite much progress, the functions of the majority of viral miRNAs remain unknown. Most previous studies have used biochemical methods to uncover targets of viral miRNAs, but it is unclear what fraction of these targets is functionally important.

View Article and Find Full Text PDF

Polyomaviruses (PyVs) are associated with tumors including Merkel cell carcinoma (MCC). Several PyVs encode microRNAs (miRNAs) but to date no abundant PyV miRNAs have been reported in tumors. To better understand the function of the Merkel cell PyV (MCPyV) miRNA, we examined phylogenetically-related viruses for miRNA expression.

View Article and Find Full Text PDF

Transcripts possessing a 5'-triphosphate are a hallmark of viral transcription and can trigger the host antiviral response. 5'-triphosphates are also found on common host transcripts transcribed by RNA polymerase III (RNAP III), yet how these transcripts remain non-immunostimulatory is incompletely understood. Most microRNAs (miRNAs) are 5'-monophosphorylated as a result of sequential endonucleolytic processing by Drosha and Dicer from longer RNA polymerase II (RNAP II)-transcribed primary transcripts.

View Article and Find Full Text PDF

In the past two decades, our knowledge of gene regulation has been greatly expanded by the discovery of microRNAs (miRNAs). miRNAs are small (19-24 nt) noncoding RNAs (ncRNAs) found in metazoans, plants, and some viruses. They have been shown to regulate many cellular processes, including differentiation, maintenance of homeostasis, apoptosis, and the immune response.

View Article and Find Full Text PDF