Publications by authors named "Christopher S Oleata"

Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share dysregulated neuroimmune-related pathways. Here, we used our established rat model of comorbid post-traumatic stress disorder (PTSD)/AUD to characterize the interleukin 18 (IL-18) system in the central amygdala (CeA). Male and female rats underwent novel (NOV) and familiar (FAM) shock stress, or no stress (unstressed controls; CTL) followed by voluntary alcohol drinking and PTSD-related behaviors, then all received renewed alcohol access prior to the experiments.

View Article and Find Full Text PDF
Article Synopsis
  • Impairments in the HPA axis and increased glucocorticoid receptor (GR) activity in the central amygdala (CeA) are important factors in developing alcohol use disorder (AUD).
  • The GR antagonist mifepristone reduces craving and consumption of alcohol in AUD patients and models, affecting GABA transmission in alcohol-dependent rats.
  • Female rats show higher GR expression in the CeA than males, suggesting sexual differences in GR regulation, and mifepristone influences GABA signaling in a way that may relate to behaviors associated with AUD.
View Article and Find Full Text PDF

Aberrant glucocorticoid signaling via glucocorticoid receptors (GR) plays a critical role in alcohol use disorder (AUD). Acute alcohol withdrawal and protracted abstinence in dependent rats are associated with increased GR signaling and changes in GR-mediated transcriptional activity in the rat central nucleus of the amygdala (CeA). The GR antagonist mifepristone decreases alcohol consumption in dependent rats during acute withdrawal and protracted abstinence.

View Article and Find Full Text PDF
Article Synopsis
  • Alcohol use disorder (AUD) and affective disorders, such as PTSD, often co-occur and share similar biological mechanisms that could be targeted for more effective treatment.
  • Researchers developed a model using stressed rats to study how different stress contexts affect alcohol consumption and PTSD-like symptoms, observing gender differences in how context impacts drinking behavior.
  • Modifying the model to include prior alcohol exposure revealed that while stress impacts drinking and GABA signaling in males, females did not show significant changes, indicating a potential disconnect between PTSD symptoms and AUD vulnerability.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the relationship between alcohol use disorder (AUD) and anxiety disorders using a rat model to explore shared underlying mechanisms and potential therapeutic targets.
  • - Wistar rats were subjected to a two-hit stress model involving footshocks, leading to variations in drinking behavior based on stress context, revealing significant differences between male and female responses.
  • - Key findings included increased GABAergic activity in the central amygdala and a specific cytokine profile linked to PTSD-like symptoms, helping to better replicate clinical comorbidities and highlighting sex-specific differences in behavior and biological responses.
View Article and Find Full Text PDF

Background: Alcohol use disorder (AUD) increases brain stress systems while suppressing reward system functioning. One expression of stress system recruitment is elevated GABAergic activity in the central amygdala (CeA), which is involved in the excessive drinking seen with AUD. The sulfonic amino acid taurine, a glycine receptor partial agonist, modulates GABAergic activity in the rewarding effects of alcohol.

View Article and Find Full Text PDF

Oxytocin administration has been reported to decrease consumption, withdrawal, and drug-seeking associated with several drugs of abuse and thus represents a promising pharmacological approach to treat drug addiction. We used an established rat model of alcohol dependence to investigate oxytocin's effects on dependence-induced alcohol drinking, enhanced motivation for alcohol, and altered GABAergic transmission in the central nucleus of the amygdala (CeA). Intraperitoneal oxytocin administration blocked escalated alcohol drinking and the enhanced motivation for alcohol in alcohol-dependent but not nondependent rats.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) is hypothesized to drive the development of alcohol dependence, as it regulates ethanol intake and several anxiogenic behaviors linked to withdrawal. Excitatory glutamatergic neurotransmission contributes to alcohol reinforcement, tolerance and dependence. Therefore, in this study we used in vitro slice electrophysiology to investigate the effects of CRF and its receptor subtype (CRF and CRF) antagonists on both evoked and spontaneous action potential-independent glutamatergic transmission in the CeA of naive and ethanol-dependent Sprague-Dawley rats.

View Article and Find Full Text PDF

The central amygdala (CeA) is involved in the processing of anxiety and stress and plays a role in ethanol consumption. Chronic ethanol recruits stress systems in the CeA, leading to aversive withdrawal symptoms. Although primarily GABAergic, CeA contains glutamatergic afferents, and we have reported inhibitory effects of ethanol on locally evoked glutamatergic responses in CeA of Wistar and Marchigian Sardinian alcohol-preferring (msP) rats.

View Article and Find Full Text PDF

Background: Corticotropin-releasing factor (CRF) mediates anxiogenic responses by activating CRF type 1 (CRF) receptors in limbic brain regions. Anxiety is further modulated by the endogenous cannabinoid (eCB) system that attenuates the synaptic effects of stress. In the amygdala, acute stress activates the enzymatic clearance of the eCB N-arachidonoylethanolamine via fatty acid amide hydrolase (FAAH), although it is unclear whether chronic dysregulation of CRF systems induces maladaptive changes in amygdalar eCB signaling.

View Article and Find Full Text PDF

The CRF system of the central nucleus of the amygdala (CeA) is important for the processing of anxiety, stress, and effects of acute and chronic ethanol. We previously reported that ethanol decreases evoked glutamate transmission in the CeA of Sprague Dawley rats and that ethanol dependence alters glutamate release in the CeA. Here, we examined the effects of ethanol, CRF and a CRF1 receptor antagonist on spontaneous and evoked glutamatergic transmission in CeA neurons from Wistar and Marchigian Sardinian Preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and characterized by heightened activity of the CRF1 system.

View Article and Find Full Text PDF

Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice.

View Article and Find Full Text PDF

The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. A large body of evidence shows that Nociceptin/Orphanin FQ (N/OFQ) regulates ethanol intake and anxiety-like behavior. In the rat, ethanol significantly augments CeA GABA release, whereas N/OFQ diminishes it.

View Article and Find Full Text PDF

Corticotropin releasing factor (CRF) is the primary mediator of stress responses, and nociceptin/orphanin FQ (N/OFQ) plays an important role in the modulation of these stress responses. Thus, in this multidisciplinary study, we explored the relationship between the N/OFQ and the CRF systems in response to stress. Using in situ hybridization (ISH), we assessed the effect of body restraint stress on the gene expression of CRF and N/OFQ-related genes in various subdivisions of the amygdala, a critical brain structure involved in the modulation of stress response and anxiety-like behaviors.

View Article and Find Full Text PDF

The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions.

View Article and Find Full Text PDF

Background: Studies have demonstrated an enhanced dynorphin/kappa-opioid receptor (KOR) system following repeated cocaine exposure, but few reports have focused on neuroadaptations within the central amygdala (CeA).

Methods: We identified KOR-related physiological changes in the CeA following escalation of cocaine self-administration in rats. We used in vitro slice electrophysiological (intracellular and whole-cell recordings) methods to assess whether differential cocaine access in either 1-hour (short access [ShA]) or 6-hour (long access [LgA]) sessions induced plasticity at CeA gamma-aminobutyric acid (GABA)ergic synapses or altered the sensitivity of these synapses to KOR agonism (U50488) or antagonism (norbinaltorphimine [norBNI]).

View Article and Find Full Text PDF

The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. Alcohol dependence is associated with increased corticotropin releasing factor (CRF) influence on CeA GABA release and CRF type 1 receptor (CRF(1)) antagonists prevent the excessive alcohol consumption associated with dependence. Genetically selected Marchigian Sardinian (msP) rats have an overactive extrahypothalamic CRF(1) system, are highly sensitive to stress, and display an innate preference for alcohol.

View Article and Find Full Text PDF