Publications by authors named "Christopher S Martens"

A specialized pore-fluid array (PFA) sampler was designed to collect and store pore fluids to monitor temporal changes of ions and gases in gas hydrate bearing sediments. We tested the hypothesis that pore-fluid chemistry records hydrate formation or decomposition events and reflects local seismic activity. The PFA is a seafloor probe that consists of an interchangeable instrument package that houses OsmoSamplers, long-term pore-fluid samplers, a specialized low-dead volume fluid coupler, and eight sample ports along a 10 m sediment probe shaft.

View Article and Find Full Text PDF

The evolution of marine demosponges has led to two basic life strategies: one involving close associations with large and diverse communities of microorganisms, termed high microbial abundance (HMA) species, and one that is essentially devoid of associated microorganisms, termed low microbial abundance (LMA) species. This dichotomy has previously been suggested to correlate with morphological differences, with HMA species having a denser mesohyl and a more complex aquiferous systems composed of longer and narrower water canals that should necessitate slower seawater filtration rates. We measured mesohyl density for a variety of HMA and LMA sponges in the Florida Keys, and seawater pumping rates for a select group of these sponges using an in situ dye technique.

View Article and Find Full Text PDF

The simple biochemistry of H2 is critical to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. The sensitivity of each of these processes to H2 can be described collectively, through the quantitative language of thermodynamics. A necessary prerequisite is to understand the factors that, in turn, control H2 partial pressures.

View Article and Find Full Text PDF