Publications by authors named "Christopher Rudyk"

Background: Preclinical and clinical evidence suggests that cannabis has potential analgesic properties. However, cannabinoid receptor expression and localization within spinal cord pain processing circuits remain to be characterized across sex and species.

Aims: We aimed to investigate the differential expression of the cannabinoid type 1 (CB1) receptor across dorsal horn laminae and cell populations in male and female adult rats and humans.

View Article and Find Full Text PDF

Astrocytes comprise a heterogeneous cell population characterized by distinct morphologies, protein expression and function. Unlike neurons, astrocytes do not generate action potentials, however, they are electrically dynamic cells with extensive electrophysiological heterogeneity and diversity. Astrocytes are hyperpolarized cells with low membrane resistance.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) are excitatory ionotropic glutamate receptors expressed throughout the CNS, including in the spinal dorsal horn. The GluN2 subtypes of NMDAR subunit, which include GluN2A, GluN2B, and GluN2D in the dorsal horn, confer NMDARs with structural and functional variability, enabling heterogeneity in synaptic transmission and plasticity. Despite essential roles for NMDARs in physiological and pathological pain processing, the distribution and function of these specific GluN2 isoforms across dorsal horn laminae remain poorly understood.

View Article and Find Full Text PDF

Parkinson's disease is a neurodegenerative disease characterized by a loss of dopaminergic substantia nigra neurons and depletion of dopamine. To date, current therapeutic approaches focus on managing motor symptoms and trying to slow neurodegeneration, with minimal capacity to promote neurorecovery. mGluR5 plays a key role in neuroplasticity, and altered mGluR5 signaling contributes to synucleinopathy and dyskinesia in patients with Parkinson's disease.

View Article and Find Full Text PDF

Recent studies have suggested that cortical astroglia play an important role in depressive-like behaviors. Potential astroglial contributions have been proposed based on their known neuroplastic functions, such as glutamate recycling and synaptic plasticity. However, the specific mechanisms by which astroglial cells may contribute or protect against a depressive phenotype remain unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a devastating age related neurodegenerative disease that is believed to have a lengthy prodromal state. It is critical to find methods to harness compensatory recovery processes in order to slow or prevent the eventual progression of clinical symptoms. The current perspective paper argues that immune system signaling molecules represent such a promising therapeutic approach.

View Article and Find Full Text PDF