Proximity labeling (PL) has given researchers the tools to explore protein-protein interactions (PPIs) in living systems; however, most PL studies are performed on intracellular targets. We have adapted the original PL method to investigate PPIs within the extracellular compartment, which we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigated the interactome of the matrisome protein TIMP2.
View Article and Find Full Text PDFCerebral dopamine neurotrophic factor (CDNF) and its close structural relative, mesencephalic astrocyte-derived neurotrophic factor (MANF), are proteins with neurotrophic properties. CDNF protects and restores the function of dopamine (DA) neurons in rodent and non-human primate (NHP) toxin models of Parkinson's disease (PD) and therefore shows promise as a drug candidate for disease-modifying treatment of PD. Moreover, CDNF was found to be safe and to have some therapeutic effects on PD patients in phase 1/2 clinical trials.
View Article and Find Full Text PDFDysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca-mediated processes such as proteostasis.
View Article and Find Full Text PDFClassical methods of investigating protein-protein interactions (PPIs) are generally performed in non-living systems, yet in recent years new technologies utilizing proximity labeling (PL) have given researchers the tools to explore proximal PPIs in living systems. PL has distinct advantages over traditional protein interactome studies, such as the ability to identify weak and transient interactions in vitro and in vivo. Most PL studies are performed on targets within the cell or on the cell membrane.
View Article and Find Full Text PDFResponse to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient, which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area.
View Article and Find Full Text PDFOptogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner.
View Article and Find Full Text PDFResponse to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area.
View Article and Find Full Text PDFJ Neurosci
March 2023
The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells.
View Article and Find Full Text PDFIntroduction: Recurrent and metastatic pheochromocytoma (PCC) are rare advanced endocrine neoplasms with limited treatment options. Insight into the pathogenic molecular alterations in patients with advanced PCC can provide therapeutic options for precisely targeting dysregulated pathways.
Objective: We report the discovery and characterization of a novel BRAF-containing fusion transcript and its downstream molecular alterations in a patient with recurrent PCC with peritoneal seeding (pheochromocytomatosis).
eNeuro
August 2021
The orbitofrontal cortex (OFC) is a brain region involved in higher-order decision-making. Rodent studies show that cocaine self-administration (CSA) reduces OFC contribution to goal-directed behavior and behavioral strategies to avoid drug intake. This change in OFC function persists for many weeks after cocaine withdrawal, suggesting involvement in the process of addiction.
View Article and Find Full Text PDFRelapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced drug seeking in rodent models correlates with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses in the nucleus accumbens core (NAcore). Matrix metalloproteinases (MMPs) are inducible endopeptidases that degrade extracellular matrix (ECM) proteins, and reveal tripeptide Arginine-Glycine-Aspartate (RGD) domains that bind and signal through integrins.
View Article and Find Full Text PDFWe recently reported that social choice-induced voluntary abstinence prevents incubation of methamphetamine craving in rats. This inhibitory effect was associated with activation of protein kinase-Cδ (PKCδ)-expressing neurons in central amygdala lateral division (CeL). In contrast, incubation of craving after forced abstinence was associated with activation of CeL-expressing somatostatin (SOM) neurons.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2019
The cytomegalovirus (CMV) immediate early promoter has been extensively developed and exploited for transgene expression and , including human clinical trials. The CMV promoter has long been considered a stable, constitutive, and ubiquitous promoter for transgene expression. Using two different CMV-based promoters, we found an increase in CMV-driven transgene expression in the rodent brain and in primary neuronal cultures in response to methamphetamine, glutamate, kainic acid, and activation of G protein-coupled receptor signaling using designer receptors exclusively activated by designer drugs (DREADDs).
View Article and Find Full Text PDFNeuroscience
August 2019
Genetic factors significantly contribute to the risk for developing alcoholism. To study these factors and other associated phenotypes, rodent lines have been developed using selective breeding for high alcohol preference. One of these models, the alcohol preferring (P) rat, has been used in hundreds of preclinical studies over the last few decades.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
December 2019
The CRISPR/Cas9 system is a revolutionary gene editing technology that combines simplicity of use and efficiency of mutagenesis. As this technology progresses toward human therapies, valid concerns including off-target mutations and immunogenicity must be addressed. One approach to address these issues is to minimize the presence of the CRISPR/Cas9 components by maintaining a tighter temporal control of Cas9 endonuclease and reducing the time period of activity.
View Article and Find Full Text PDFMesencephalic astrocyte-derived neurotrophic factor (MANF) is the only human neurotrophic factor with an evolutionarily-conserved C. elegans homolog, Y54G2A.23 or manf-1.
View Article and Find Full Text PDFDesigner receptors exclusively activated by designer drugs (DREADDs) are extensively used to modulate neuronal activity in rodents, but their use in primates remains limited. An essential need that remains is the demonstration that DREADDs are efficiently expressed on the plasma membrane of primate neurons. To address this issue, electron microscopy immunogold was used to determine the subcellular localization of the AAV vector-induced DREADDs hM4Di and hM3Dq fused to different tags in various brain areas of rhesus monkeys and mice.
View Article and Find Full Text PDFHistorically, the rat has been the preferred animal model for behavioral studies. Limitations in genome modification have, however, caused a lag in their use compared to the bevy of available transgenic mice. Here, we have developed several transgenic tools, including viral vectors and transgenic rats, for targeted genome modification in specific adult rat neurons using CRISPR-Cas9 technology.
View Article and Find Full Text PDFOutputs from the nucleus accumbens (NAc) include projections to the ventral pallidum and the ventral tegmental area and subtantia nigra in the ventral mesencephalon. The medium spiny neurons (MSN) that give rise to these pathways are GABAergic and consist of two populations of equal number that are segregated by differentially expressed proteins, including D1- and D2-dopamine receptors. Afferents to the ventral pallidum arise from both D1- and D2-MSNs, whereas the ventral mesencephalon is selectively innervated by D1-MSN.
View Article and Find Full Text PDFAdeno-associated virus (AAV) vector-mediated delivery of human α-synuclein (α-syn) gene in rat substantia nigra (SN) results in increased expression of α-syn protein in the SN and striatum which can progressively degenerate dopaminergic neurons. Therefore, this model is thought to recapitulate the neurodegeneration in Parkinson's disease. Here, using AAV to deliver α-syn above the SN in male and female rats resulted in clear expression of human α-syn in the SN and striatum.
View Article and Find Full Text PDFInvestigators have utilized the CRISPR/Cas9 gene-editing system to specifically target well-conserved regions of HIV, leading to decreased infectivity and pathogenesis in vitro and ex vivo. We utilized a specialized extracellular vesicle termed a "gesicle" to efficiently, yet transiently, deliver Cas9 in a ribonucleoprotein form targeting the HIV long terminal repeat (LTR). Gesicles are produced through expression of vesicular stomatitis virus glycoprotein and package protein as their cargo, thus bypassing the need for transgene delivery, and allowing finer control of Cas9 expression.
View Article and Find Full Text PDFContext: Endoplasmic reticulum (ER) calcium depletion is associated with diverse diseases, including cardiac, hepatic, and neurologic diseases.
Objective: The aim of the present study was to identify and characterize an endogenous protein that could be used to monitor ER calcium depletion comparably to a previously described exogenous reporter protein.
Materials And Methods: The use of a selective esterase-fluorescein diester pair allowed for carboxylesterase activity in extracellular fluid to be measured using a fluorescent readout.
Glial cell line-derived neurotrophic factor (GDNF) is one of the most studied neurotrophic factors. GDNF has two splice isoforms, full-length pre-α-pro-GDNF (α-GDNF) and pre-β-pro-GDNF (β-GDNF), which has a 26 amino acid deletion in the pro-region. Thus far, studies have focused solely on the α-GDNF isoform, and nothing is known about the effects of the shorter β-GDNF variant.
View Article and Find Full Text PDF