Publications by authors named "Christopher R Pitzer"

Although many of the structures and organelles of vegetative cells are comparable to those of animal tissues, significant differences between the two kingdoms require modifications in histological techniques for both tissue processing steps and histochemical staining techniques. The authors investigated the challenges of working with plant tissues by collecting various flora to represent the four main plant organs: leaf, stem, root, and flower/fruit. Triplicate samples for each specimen were placed into formalin for paraffin embedding, placed into formalin for later frozen sections, and used fresh to undergo immediate frozen sectioning.

View Article and Find Full Text PDF

Recent studies have indicated a role for circulating extracellular vesicles (EVs) in the pathogenesis of multiple diseases. However, most in vitro studies have used variable and arbitrary doses of EVs rather than interpreting EVs as an existing component of standard skeletal muscle cell culture media. The current study provides an initial investigation into the effects of circulating EVs on the metabolic phenotype of C2C12 myotubes by replacing EVs from fetal bovine serum with circulating EVs from control mice or mice with obesity and type 2 diabetes (OT2D).

View Article and Find Full Text PDF

The application of most chemical fixatives, such as formalin, in the anatomic pathology laboratory requires safety training and hazardous chemical monitoring due to the toxicity and health risks associated with their use. Consequently, the use of formalin has been banned in most applications in Europe; the primary exception is its use in the histology laboratory in lieu of a suitable and safer alternative. Glyoxal based solutions, several of which are available commercially, are the most promising alternative fixatives, because they are based on a mechanism of fixation similar to that of formalin.

View Article and Find Full Text PDF

Gene expression of the NR4A nuclear orphan receptor NOR-1 is reduced in obesity and in human skeletal muscle during disuse. It has been well established that NOR-1 is highly responsive to both aerobic and resistance exercise and NOR-1 overexpression is coincident with a plethora of metabolic benefits. However, it is unclear whether loss of NOR-1 contributes to inappropriate metabolic signaling in skeletal muscle that could lead to insulin resistance.

View Article and Find Full Text PDF

Despite claims of safety or harm reduction for electronic cigarettes (E-cig) use (also known as vaping), emerging evidence indicates that E-cigs are not likely safe, or necessarily safer than traditional cigarettes, when considering the user's risk of developing vascular dysfunction/disease. E-cigs are different from regular cigarettes in that E-cig devices are highly customizable, and users can change the e-liquid composition (such as the base solution, flavors, and nicotine level). Since the effects of E-cigs on the microvascular responses in skeletal muscle are poorly understood, we used intravital microscopy with an acute (one-time 10 puff) exposure paradigm to evaluate the individual components of e-liquid on vascular tone and endothelial function in the arterioles of the gluteus maximus muscle of anesthetized C57Bl/6 mice.

View Article and Find Full Text PDF

Cancer cachexia is defined as unintentional weight loss secondary to neoplasia and is associated with poor prognosis and outcomes. Cancer cachexia associated weight loss affects both lean tissue (i.e.

View Article and Find Full Text PDF

Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers tested the effects of mitochondrial transplant therapy (MTT) on muscle restoration after injury, hypothesizing that it would enhance muscle function.
  • They induced damage in the gastrocnemius muscle of mice and injected either donor mitochondria or a sham treatment, evaluating muscle repair over 21 days.
  • Results indicated that while MTT did not significantly reduce inflammation, it led to less collagen buildup and allowed muscle mass and force to recover more quickly compared to the control group, achieving near-normal levels by 14 days post-injury.
View Article and Find Full Text PDF

Neurodegenerative and neurovascular disorders affect millions of people worldwide and account for a large and increasing health burden on the general population. Thus, there is a critical need to identify potential disease-modifying treatments that can prevent or slow the disease progression. Mitochondria are highly dynamic organelles and play an important role in energy metabolism and redox homeostasis, and mitochondrial dysfunction threatens cell homeostasis, perturbs energy production, and ultimately leads to cell death and diseases.

View Article and Find Full Text PDF

Stroke is a leading cause of mortality and long-term disability in patients worldwide. Skeletal muscle is the primary systemic target organ of stroke that induces muscle wasting and weakness, which predominantly contribute to functional disability in stroke patients. Currently, no pharmacological drug is available to treat post-stroke muscle morbidities as the mechanisms underlying post-stroke muscle wasting remain poorly understood.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure.

Abstract: Chronic unresolvable stress leads to the development of depression and cardiovascular disease.

View Article and Find Full Text PDF

Proponents for electronic cigarettes (E-cigs) claim that they are a safe alternative to tobacco-based cigarettes; however, little is known about the long-term effects of exposure to E-cig vapor on vascular function. The purpose of this study was to determine the cardiovascular consequences of chronic E-cig exposure. Female mice (C57BL/6 background strain) were randomly assigned to chronic daily exposure to E-cig vapor, standard (3R4F reference) cigarette smoke, or filtered air ( n = 15/group).

View Article and Find Full Text PDF