Publications by authors named "Christopher R Peeler"

Background: A passive dosimeter framework for the measurement of dose in carbon ion beams has yet to be characterized or implemented for regular use.

Purpose: This work determined the dose calculation correction factors for absorbed dose in thermoluminescent dosimeters (TLDs) in a therapeutic carbon ion beam. TLD could be a useful tool for remote audits, particularly in the context of clinical trials as new protocols are developed for carbon ion radiotherapy.

View Article and Find Full Text PDF

. This study characterized optically-stimulated luminescent dosimeter (OSLD) nanoDots for use in a therapeutic carbon beam using the Imaging and Radiation Oncology Core (IROC) framework for remote output verification..

View Article and Find Full Text PDF

Purpose: As carbon ion radiotherapy increases in use, there are limited phantom materials for heterogeneous or anthropomorphic phantom measurements. This work characterized the radiological clinical equivalence of several phantom materials in a therapeutic carbon ion beam.

Methods: Eight materials were tested for radiological material-equivalence in a carbon ion beam.

View Article and Find Full Text PDF

Purpose: To evaluate 2 published normal tissue complication probability models for radiation-induced hypothyroidism (RHT) on a large cohort of oropharyngeal carcinoma (OPC) patients who were treated with intensity-modulated radiation therapy (IMRT).

Methods And Materials: OPC patients treated with retrievable IMRT Digital Imaging and Communications in Medicine (DICOMs) data and available baseline and follow-up thyroid function tests were included. Mean dose (Dmean) to the thyroid gland (TG) and its volume were calculated.

View Article and Find Full Text PDF

Purpose: Accurate modeling of the relative biological effectiveness (RBE) of particle beams requires increased systematic in vitro studies with human cell lines with care towards minimizing uncertainties in biologic assays as well as physical parameters. In this study, we describe a novel high-throughput experimental setup and an optimized parameterization of the Monte Carlo (MC) simulation technique that is universally applicable for accurate determination of RBE of clinical ion beams. Clonogenic cell-survival measurements on a human lung cancer cell line (H460) are presented using proton irradiation.

View Article and Find Full Text PDF

We introduce an approach for global fitting of the recently published high-throughput and high accuracy clonogenic cell-survival data for therapeutic scanned proton beams. Our fitting procedure accounts for the correlation between the cell-survival, the absorbed (physical) dose and the proton linear energy transfer (LET). The fitting polynomials and constraints have been constructed upon generalization of the microdosimetric kinetic model (gMKM) adapted to account for the low energy and high lineal-energy spectrum of the beam where the current radiobiological models may underestimate the reported relative biological effectiveness (RBE).

View Article and Find Full Text PDF

The relative biological effectiveness (RBE) for particle therapy is a complex function of particle type, radiation dose, linear energy transfer (LET), cell type, endpoint, etc. In the clinical practice of proton therapy, the RBE is assumed to have a fixed value of 1.1.

View Article and Find Full Text PDF

Background And Purpose: A constant relative biological effectiveness (RBE) is used for clinical proton therapy; however, experimental evidence indicates that RBE can vary. We analyzed pediatric ependymoma patients who received proton therapy to determine if areas of normal tissue damage indicated by post-treatment image changes were associated with increased biological dose effectiveness.

Material And Methods: Fourteen of 34 children showed T2-FLAIR hyperintensity on post-treatment magnetic resonance (MR) images.

View Article and Find Full Text PDF

The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic effectiveness of particle beams varies along the beam path.

View Article and Find Full Text PDF

In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models.

View Article and Find Full Text PDF