Publications by authors named "Christopher R Lowe"

Article Synopsis
  • Value-based laboratory medicine focuses on improving patient outcomes by enhancing the clinical utility of diagnostic tests while optimizing resources and reducing costs.
  • Key elements include the organization of diagnostics, translating lab data into meaningful clinical information, and addressing ethical considerations such as patient empowerment and big data analysis.
  • The paper summarizes insights from the EFLM Strategic Conference and highlights the importance of education, technological advancements, and future regulations in shaping the profession.
View Article and Find Full Text PDF

Nanoparticle polymer composites have enabled material multifunctionalities that are difficult to obtain otherwise. A simple modification to a commercially available resin system enables a universal methodology to embed nanoparticles in resins via spatial, temporal, thermal, concentration, and chemical control parameters. Changes in nanoparticle density distribution are exploited to demonstrate dynamic optical and electronic properties that can be processed on-demand, without the need for expensive equipment or cleanroom facilities.

View Article and Find Full Text PDF

Point-of-care (PoC) diagnostics promises to yield test results accessible anytime and anywhere. Its application has expanded from providing healthcare necessities to the real-time monitoring of the ageing and health conscious population. Following the evolving consumer demand, there is a trend toward developing non- and minimally invasive PoC tests.

View Article and Find Full Text PDF

Bioreactors have been used both to develop new, and to improve bioprocess yields for, biopharmaceutical products. However, efforts to miniaturize bioreactors, in order to save costs and accelerate process development times, have been limited by the lack of on-site monitoring capabilities available at such scales. In this study, small volume (3 nL) nonconsumptive holographic sensors were integrated into a glass-PDMS microfluidic chip to monitor via a blue-shift in the resultant holographic replay wavelength, the change in pH during microbial growth of Lactobacillus casei ( L.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

A versatile system to construct bulk polymeric phononic crystals by using acoustic waves is described. In order to fabricate this material, a customised cavity device fitted with a ∼2 MHz acoustic transducer and an acoustic reflector is employed for the acoustic standing wave creation in the device chamber. The polymer crystal is formed when the standing waves are created during the polymerisation process.

View Article and Find Full Text PDF

Existing techniques for patterning metallic structures on elastomers are limited in terms of resolution, yield and scalability. The primary constraint is the incompatibility of their physical properties with conventional cleanroom techniques. We demonstrate a reliable fabrication strategy to transfer high resolution metallic structures of <500 nm in dimension on elastomers.

View Article and Find Full Text PDF

The research reported herein integrates a generic holographic sensor platform and a smartphone-based colour quantification algorithm in order to standardise and improve the determination of the concentration of analytes of interest. The utility of this approach has been exemplified by analysing the replay colour of the captured image of a holographic pH sensor in near real-time. Personalised image encryption followed by a wavelet-based image compression method were applied to secure the image transfer across a bandwidth-limited network to the cloud.

View Article and Find Full Text PDF

A recently developed novel recombinant influenza antigen vaccine has shown great success in preclinical studies in ferrets and mice. It provides broader protection, and is efficient to manufacture compared to the conventional trivalent influenza vaccines (TIV). Each strain of the recombinant antigen has a constant self-assembled bacterial ferritin core which, if used as a target for affinity chromatography, could lead to a universal purification method.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigated the use of two tryptophan-based tags, NWNWNW and WFWFWF, to enhance the production and purification of Green Fluorescence Protein (GFP).
  • The expression yields for GFP with these tags were relatively low, at 0.11mg/ml for WFWFWF and 0.48mg/ml for NWNWNW.
  • A library of 64 ligands was screened to identify effective capture methods for the tagged proteins, ultimately leading to the selection of specific ligands with strong binding affinities for each tag, and a method for refolding inclusion bodies was also explored.
View Article and Find Full Text PDF

An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated.

View Article and Find Full Text PDF

Phosphorylation is a reversible post-translational modification of proteins that controls a plethora of cellular processes and triggers specific physiological responses, for which there is a need to develop tools to characterize phosphorylated targets efficiently. Here, a combinatorial library of triazine-based synthetic ligands comprising 64 small molecules has been rationally designed, synthesized and screened for the enrichment of phosphorylated peptides. The lead candidate (coined A8A3), composed of histidine and phenylalanine mimetic components, showed high binding capacity and selectivity for binding mono- and multi-phosphorylated peptides at pH 3.

View Article and Find Full Text PDF

One challenge facing the production of glycoprotein therapeutics is the lack of stable and selective affinity ligands for their enrichment. Synthetic affinity ligands based on the solid phase multi-component Ugi reaction represent a desirable option, particularly those incorporating benzoboroxole and its derivatives, which have been shown to enrich glycoproteins under physiological conditions. Thus, an Ugi ligand, A21C11I8, comprising 5-amino-2-hydroxymethylphenylboronic acid was synthesised on aldehyde-functionalised Sepharose™.

View Article and Find Full Text PDF

Developing ligands capable of carbohydrate recognition has become increasingly important as the essential roles of glycoproteins and glycolipids in a diverse array of cellular signaling, pathophysiology, and immune response mechanisms are elucidated. Effective ligands for the glycan portion of glycoproteins and glycolipids are needed for pre-enrichment proteomics strategies, as well as for the purification of individual glycoproteins from complex biological milieu encountered both in biochemistry research and bio-pharmaceutical development. In this work, we developed a carbohydrate specific affinity ligand for glycoprotein purification using a one-pot, multi-component synthesis reaction (Ugi synthesis) and an amine-functionalized benzoboroxole moiety immobilized on agarose beads.

View Article and Find Full Text PDF

The green fluorescent protein (GFP) is a useful indicator in a broad range of applications including cell biology, gene expression and biosensing. However, its full potential is hampered by the lack of a selective, mild and low-cost purification scheme. In order to address this demand, a novel adsorbent was developed as a generic platform for the purification of GFP or GFP fusion proteins, giving GFP a dual function as reporter and purification tag.

View Article and Find Full Text PDF

Real-time glucose monitoring has been beneficial in reducing health complications associated with diabetes as well as a decrease in mortality. This report describes a novel holographic platform, fabricated via laser ablation on chitosan hydrogel with gold nanoparticles with a replaying in visible and near IR. The sensor responded with a 12 nm and 7 nm shift in wavelength at glucose concentrations in the 0-70 mM range and in the visible and near IR, respectively, at pH 7.

View Article and Find Full Text PDF

Contact lenses as a minimally invasive platform for diagnostics and drug delivery have emerged in recent years. Contact lens sensors have been developed for analyzing the glucose composition of tears as a surrogate for blood glucose monitoring and for the diagnosis of glaucoma by measuring intraocular pressure. However, the eye offers a wider diagnostic potential as a sensing site and therefore contact lens sensors have the potential to improve the diagnosis and treatment of many diseases and conditions.

View Article and Find Full Text PDF

One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction.

View Article and Find Full Text PDF

A novel affinity "tag-receptor" pair was developed as a generic platform for the purification of fusion proteins. The hexapeptide RKRKRK was selected as the affinity tag and fused to green fluorescent protein (GFP). The DNA fragments were designed, cloned in Pet-21c expression vector and expressed in E.

View Article and Find Full Text PDF

Developing noninvasive and accurate diagnostics that are easily manufactured, robust, and reusable will provide monitoring of high-risk individuals in any clinical or point-of-care environment. We have developed a clinically relevant optical glucose nanosensor that can be reused at least 400 times without a compromise in accuracy. The use of a single 6 ns laser (λ = 532 nm, 200 mJ) pulse rapidly produced off-axis Bragg diffraction gratings consisting of ordered silver nanoparticles embedded within a phenylboronic acid-functionalized hydrogel.

View Article and Find Full Text PDF

The rapidly expanding number of mobile medical applications have the potential to transform the patient-healthcare provider relationship by improving the turnaround time and reducing costs. In September 2013, the U.S.

View Article and Find Full Text PDF

Previous work demonstrated that Bacillus megaterium QM B1551 spores that are null for the sleB and cwlJ genes, which encode cortex-lytic enzymes (CLEs), either of which is required for efficient cortex hydrolysis in Bacillus spores, could germinate efficiently when complemented with a plasmid-borne copy of ypeB plus the nonlytic portion of sleB encoding the N-terminal domain of SleB (sleB(N)). The current study demonstrates that the defective germination phenotype of B. megaterium sleB cwlJ spores can partially be restored when they are complemented with plasmid-borne ypeB alone.

View Article and Find Full Text PDF