Publications by authors named "Christopher R Horne"

Necroptosis is a lytic and pro-inflammatory form of programmed cell death executed by the terminal effector, the MLKL (mixed lineage kinase domain-like) pseudokinase. Downstream of death and Toll-like receptor stimulation, MLKL is trafficked to the plasma membrane via the Golgi-, actin- and microtubule-machinery, where activated MLKL accumulates until a critical lytic threshold is exceeded and cell death ensues. Mechanistically, MLKL's lytic function relies on disengagement of the N-terminal membrane-permeabilising four-helix bundle domain from the central autoinhibitory brace helix: a process that can be experimentally mimicked by introducing the R30E MLKL mutation to induce stimulus-independent cell death.

View Article and Find Full Text PDF

Purpose: Pediatric cholestasis is the phenotypic expression of clinically and genetically heterogeneous disorders of bile acid synthesis and flow. Although a growing number of monogenic causes of pediatric cholestasis have been identified, the majority of cases remain undiagnosed molecularly.

Methods: In a cohort of 299 pediatric participants (279 families) with intrahepatic cholestasis, we performed exome sequencing as a first-tier diagnostic test.

View Article and Find Full Text PDF

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues.

View Article and Find Full Text PDF

Tripartite ATP-independent periplasmic (TRAP) transporters are nutrient-uptake systems found in bacteria and archaea. These evolutionary divergent transporter systems couple a substrate-binding protein (SBP) to an elevator-type secondary transporter, which is a first-of-its-kind mechanism of transport. Here, we highlight breakthrough TRAP transporter structures and recent functional data that probe the mechanism of transport.

View Article and Find Full Text PDF

The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization.

View Article and Find Full Text PDF

Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKL in biological membranes and MLKL overriding pharmacological and endogenous inhibition of MLKL.

View Article and Find Full Text PDF

Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets.

View Article and Find Full Text PDF

Tribbles proteins (TRIB1-3) are pseudokinases that recruit substrates to the COP1 ubiquitin ligase. TRIB2 was the first Tribbles ortholog to be implicated as a myeloid leukemia oncogene, because it recruits the C/EBPα transcription factor for ubiquitination by COP1. Here we report identification of nanobodies that bind the TRIB2 pseudokinase domain with low nanomolar affinity.

View Article and Find Full Text PDF

The past decade has seen the emergence of the necroptosis programmed cell death pathway as an important contributor to the pathophysiology of myriad diseases. The receptor interacting protein kinase (RIPK)1 and RIPK3, and the pseudokinase executioner protein, mixed lineage kinase domain-like (MLKL), have grown to prominence as the core pathway components. Depending on cellular context, these proteins also serve as integrators of signals, such as post-translational modifications and protein or metabolite interactions, adding layers of complexity to pathway regulation.

View Article and Find Full Text PDF

Necroptosis is a caspase-independent, pro-inflammatory mode of programmed cell death which relies on the activation of the terminal effector, MLKL, by the upstream protein kinase RIPK3. To mediate necroptosis, RIPK3 must stably interact with, and phosphorylate the pseudokinase domain of MLKL, although the precise molecular cues that provoke RIPK3 necroptotic signaling are incompletely understood. The recent finding that RIPK3 S227 phosphorylation and the occurrence of a stable RIPK3:MLKL complex in human cells prior to exposure to a necroptosis stimulus raises the possibility that additional, as-yet-unidentified phosphorylation events activate RIPK3 upon initiation of necroptosis signaling.

View Article and Find Full Text PDF

Necroptosis is a lytic programmed cell death pathway with origins in innate immunity that is frequently dysregulated in inflammatory diseases. The terminal effector of the pathway, MLKL, is licensed to kill following phosphorylation of its pseudokinase domain by the upstream regulator, RIPK3 kinase. Phosphorylation provokes the unleashing of MLKL's N-terminal four-helix bundle (4HB or HeLo) domain, which binds and permeabilizes the plasma membrane to cause cell death.

View Article and Find Full Text PDF

Eph receptor tyrosine kinases play a key role in cell-cell communication. Lack of structural information on the entire multi-domain intracellular region of any Eph receptor has hindered understanding of their signaling mechanisms. Here, we use integrative structural biology to investigate the structure and dynamics of the EphA2 intracellular region.

View Article and Find Full Text PDF

Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation.

View Article and Find Full Text PDF

The ancestral origins of the lytic cell death mode, necroptosis, lie in host defense. However, the dysregulation of necroptosis in inflammatory diseases has led to widespread interest in targeting the pathway therapeutically. This mode of cell death is executed by the terminal effector, the MLKL pseudokinase, which is licensed to kill following phosphorylation by its upstream regulator, RIPK3 kinase.

View Article and Find Full Text PDF

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established.

View Article and Find Full Text PDF

EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis.

View Article and Find Full Text PDF

Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an epigenetic regulator that mediates gene expression silencing at targeted sites across the genome. Our current understanding of SMCHD1's molecular mechanism, and how substitutions within SMCHD1 lead to the diseases, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS), are only emerging. Recent structural studies of its two component domains - the N-terminal ATPase and C-terminal SMC hinge - suggest that dimerization of each domain plays a central role in SMCHD1 function.

View Article and Find Full Text PDF

Phosphorylation of the MLKL pseudokinase by the RIPK3 kinase leads to MLKL oligomerization, translocation to, and permeabilization of, the plasma membrane to induce necroptotic cell death. The precise choreography of MLKL activation remains incompletely understood. Here, we report Monobodies, synthetic binding proteins, that bind the pseudokinase domain of MLKL within human cells and their crystal structures in complex with the human MLKL pseudokinase domain.

View Article and Find Full Text PDF

Bacteria respond to environmental changes by inducing transcription of some genes and repressing others. Sialic acids, which coat human cell surfaces, are a nutrient source for pathogenic and commensal bacteria. The Escherichia coli GntR-type transcriptional repressor, NanR, regulates sialic acid metabolism, but the mechanism is unclear.

View Article and Find Full Text PDF

Peroxiredoxin 2 (Prdx2) is a thiol peroxidase with an active site Cys (C52) that reacts rapidly with HO and other peroxides. The sulfenic acid product condenses with the resolving Cys (C172) to form a disulfide which is recycled by thioredoxin or GSH via mixed disulfide intermediates or undergoes hyperoxidation to the sulfinic acid. C172 lies near the C terminus, outside the active site.

View Article and Find Full Text PDF

In this issue of Structure, Lange et al. (2020) report the structure of the pseudokinase domain of IRAK3, a negative regulator of Myddosome inflammatory signaling. The IRAK3 pseudokinase domain forms a head-to-head dimer, suggesting a new mode of kinase/pseudokinase allostery by which IRAK3 could attenuate the activity of IRAK4 in cells.

View Article and Find Full Text PDF

Necroptosis is a lytic, inflammatory cell death pathway that is dysregulated in many human pathologies. The pathway is executed by a core machinery comprising the RIPK1 and RIPK3 kinases, which assemble into necrosomes in the cytoplasm, and the terminal effector pseudokinase, MLKL. RIPK3-mediated phosphorylation of MLKL induces oligomerization and translocation to the plasma membrane where MLKL accumulates as hotspots and perturbs the lipid bilayer to cause death.

View Article and Find Full Text PDF

The life cycle of Baculoviridae family insect viruses depends on the viral protein kinase, PK-1, to phosphorylate the regulatory protein, p6.9, to induce baculoviral genome release. Here, we report the crystal structure of Cydia pomenella granulovirus PK-1, which, owing to its likely ancestral origin among host cell AGC kinases, exhibits a eukaryotic protein kinase fold.

View Article and Find Full Text PDF

Understanding how proteins interact with DNA, and particularly the stoichiometry of a protein-DNA complex, is key information needed to elucidate the biological role of the interaction, e.g. transcriptional regulation.

View Article and Find Full Text PDF