The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).
View Article and Find Full Text PDFCyclin-dependent kinase (CDK) 12 knockdown via siRNA decreases the transcription of DNA-damage-response genes and sensitizes BRCA wild-type cells to poly(ADP-ribose) polymerase (PARP) inhibition. To recapitulate this effect with a small molecule, we sought a potent, selective CDK12 inhibitor. Crystal structures and modeling informed hybridization between dinaciclib and SR-3029, resulting in lead compound 5 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-ethyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol].
View Article and Find Full Text PDFWnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods.
View Article and Find Full Text PDFThe Wnt pathway is an evolutionarily conserved and tightly regulated signaling network with important roles in embryonic development and adult tissue regeneration. Impaired Wnt pathway regulation, arising from mutations in Wnt signaling components, such as Axin, APC, and β-catenin, results in uncontrolled cell growth and triggers oncogenesis. To explore the reported link between CK2 kinase activity and Wnt pathway signaling, we sought to identify a potent, selective inhibitor of CK2 suitable for proof of concept studies in vivo.
View Article and Find Full Text PDFIn this letter, we describe the design, synthesis, and structure-activity relationship of 5-anilinopyrazolo[1,5-a]pyrimidine inhibitors of CK2 kinase. Property-based optimization of early leads using the 7-oxetan-3-yl amino group led to a series of matched molecular pairs with lower lipophilicity, decreased affinity for human plasma proteins, and reduced binding to the hERG ion channel. Agents in this study were shown to modulate pAKT(S129), a direct substrate of CK2, in vitro and in vivo, and exhibited tumor growth inhibition when administered orally in a murine DLD-1 xenograft.
View Article and Find Full Text PDFWe have investigated the expression of TPM1 α and TPM1 κ in mouse striated muscles. TPM1 α and TMP1 κ were amplified from the cDNA of mouse heart by using conventional RT-PCR. We have cloned the PCR amplified DNA and determined the nucleotide sequences.
View Article and Find Full Text PDFIn this paper we describe a series of 3-cyano-5-aryl-7-aminopyrazolo[1,5-a]pyrimidine hits identified by kinase-focused subset screening as starting points for the structure-based design of conformationally constrained 6-acetamido-indole inhibitors of CK2. The synthesis, SAR, and effects of this novel series on Akt signaling and cell proliferation in vitro are described.
View Article and Find Full Text PDFTropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts.
View Article and Find Full Text PDFThe Mexican axolotl, Ambystoma mexicanum, serves as an intriguing model to investigate myofibril organization and heart development in vertebrates. The axolotl has a homozygous recessive cardiac lethal gene "c" which causes a failure of ventricular myofibril formation and contraction. However, the conus of the heart beats, and has organized myofibrils.
View Article and Find Full Text PDFStriated muscle tropomyosin (TM) is described as containing ten exons; 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b. Exon 9a/b has critical troponin binding domains and is found in striated muscle isoforms. We have recently discovered a smooth (exon 2a)/striated (exons 9a/b) isoform expressed in amphibian, avian, and mammalian hearts, designated as an isoform of the TPM1 gene (TPM1kappa).
View Article and Find Full Text PDFWe used a model lacking endogenous sarcomeric tropomyosin, the cardiac mutant of the Mexican axolotl, to examine the effect of mutant tropomyosins on sarcomeric myofibril formation. Previous studies have introduced wild-type mouse alpha-tropomyosin into mutant hearts in organ culture with subsequent for-mation of organized myofibrils. This study examines the predominant embry-onic axolotl TPM-4 type tropomyosin (TPM4alpha), containing a conservative re- placement of glutamic acid for aspartic acid at the clinically important 175 site.
View Article and Find Full Text PDFAlthough the role of tropomyosin is well-defined in striated muscle, the precise mechanism of how tropomyosin functions is still unclear. It has been shown that extension of either N- or C-terminal ends of sarcomeric tropomyosin do not affect cardiac myofibrillogenesis, but it is not known whether simultaneous extension of both ends affects the process. For studying structural/functional relationships of sarcomeric tropomyosin, we have chosen the Ambystoma mexicanum because cardiac mutant hearts are deficient in sarcomeric tropomyosin.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2004
Tropomyosins are a family of actin binding proteins encoded by a group of highly conserved genes. Humans have four tropomyosin-encoding genes: TPM1, TPM2, TPM3, and TPM4, each of which is known to generate multiple isoforms by alternative splicing, promoters, and 3' end processing. TPM1 is the most versatile and encodes a variety of tissue specific isoforms.
View Article and Find Full Text PDFTropomyosins are present in various muscle (skeletal, cardiac, and smooth) and non-muscle cells with different isoforms characteristic of specific cell types. We describe here a novel smooth/striated chimeric isoform that was expressed in developing chick heart in addition to the classically described TM-4 type. This novel alpha-Tm tropomyosin isoform, designated as alpha-Tm-2, contains exon 2a (in place of exon 2b).
View Article and Find Full Text PDFStriated muscle tropomyosin is classically described as consisting of 10 exons, 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b, in both skeletal and cardiac muscle. A novel isoform found in embryonic axolotl heart maintains exon 9a/b of striated muscle but also has a smooth muscle exon 2a instead of exon 2b. Translation and subsequent incorporation into organized myofibrils, with both isoforms, was demonstrated with green fluorescent protein fusion protein construct.
View Article and Find Full Text PDFA striated muscle isoform of a Tropomyosin (TM-4) gene was characterized and found to be necessary for contractile function in embryonic heart. The full-length clone of this isoform was isolated from the Mexican axolotl (Ambystoma mexicanum) and named Axolotl Tropomyosin Cardiac-3 (ATmC-3). The gene encoded a cardiac-specific tropomyosin protein with 284 amino acid residues that demonstrated high homology to the Xenopus cardiac TM-4 type tropomyosin.
View Article and Find Full Text PDF