Publications by authors named "Christopher R Clough"

This work explores the reduction of 4,4'-bipyridine using two equivalents of the titanium(iii) complex Ti(N[(t)Bu]Ar)3 resulting in formation of a black, crystalline complex, (4,4'-bipy){Ti(N[(t)Bu]Ar)3}2, for which an X-ray structure determination is reported. The neutral, black, 4,4'-bipyridine-bridged bimetallic was found to be redox active, with mono- and di-anions being accessible electrochemically, and with the mono- and di-cations also being accessible chemically, and isolable, at least when using the weakly coordinating anion [B(C6F5)4](-) as the counter-ion. It proved possible to crystallize the salt [(4,4'-bipy){Ti(N[(t)Bu]Ar)3}2][B(C6F5)4]2 for a single-crystal X-ray structure investigation; in this instance it was revealed that the aromaticity of the 4,4'-bipyridine ligand, that had been disrupted upon reduction, had been regained.

View Article and Find Full Text PDF

The enthalpies of oxygen atom transfer (OAT) from mesityl nitrile oxide (MesCNO) to Me(3)P, Cy(3)P, Ph(3)P, and the complex (Ar[(t)Bu]N)(3)MoP (Ar = 3,5-C(6)H(3)Me(2)) have been measured by solution calorimetry yielding the following P-O bond dissociation enthalpy estimates in toluene solution (±3 kcal mol(-1)): Me(3)PO [138.5], Cy(3)PO [137.6], Ph(3)PO [132.

View Article and Find Full Text PDF

Examination of cyclotriphosphate and cyclotetraphosphate as ligands for Co(III) in aqueous solutions revealed that cyclotetraphosphate affords stable complexes as a hemilabile ligand, while cyclotriphosphate exhibits facile hydrolysis.

View Article and Find Full Text PDF

The nitridotungsten(vi) complex NW(N[i-Pr]Ar)(3) (-N, Ar = 3,5-Me(2)C(6)H(3)) reacts with (CF(3)C(O))(2)O followed by ClSiMe(3) to give the isolable trifluoroacetylimido-chloride complex -(NC(O)CF(3))Cl, with oxalyl chloride to give cyanate-dichloride -(OCN)(Cl)(2), and with PCl(5) to give trichlorophosphinimide-dichloride -(NPCl(3))(Cl)(2). The oxo-chloride complex -(O)Cl, obtained from -N upon treatment with pivaloyl chloride, reacts with PCl(5) to give trichloride -(Cl)(3). Synthetic and structural details are reported for the new tungsten trisanilide derivatives.

View Article and Find Full Text PDF

The transformation of acid chlorides (RC(O)Cl) to organic nitriles (RC[triple bond]N) by the terminal niobium nitride anion [N[triple bond]Nb(N[Np]Ar)3]- ([1a-N]-, where Np = neopentyl and Ar = 3,5-Me2C6H3) via isovalent N for O(Cl) metathetical exchange is presented. Nitrido anion [1a-N]- is obtained in a heterodinuclear N2 scission reaction employing the molybdenum trisamide system, Mo(N[R]Ar)3 (R = t-Bu, 2a; R = Np, 2b), as a reaction partner. Reductive scission of the heterodinuclear bridging N2 complexes, (Ar[R]N)3Mo-(mu-N2)Nb(N[Np]Ar)3 (R = t-Bu, 3b; R = Np, 3c) with sodium amalgam provides 1 equiv each of the salt Na[1a-N] and neutral N[triple bond]Mo(N[R]Ar)3 (R = t-Bu, 2a-N; R = Np, 2b-N).

View Article and Find Full Text PDF

The kinetics of the oxidative addition of PhSeSePh and PhTeTePh to the stable 17-electron complex *Cr(CO)3C5Me5 have been studied utilizing stopped-flow techniques. The rates of reaction are first-order in each reactant, and the enthalpy of activation decreases in going from Se (deltaH(double dagger) = 7.0 +/- 0.

View Article and Find Full Text PDF

Nitride NW(N[i-Pr]Ar)3 (1, Ar = 3,5-C6H3Me2) was synthesized in two steps from known NW(O-t-Bu)3 (41% overall yield). Complex 1 is the tungsten congener of NMo(N[i-Pr]Ar)3, a known molecule that has been synthesized using N2 as the nitrido nitrogen source, but which undergoes no reaction with pivaloyl chloride. Compound 1 undergoes metathesis with pivaloyl chloride at 25 degrees C to form the corresponding nitrile in 97% yield.

View Article and Find Full Text PDF

Reaction of the N-tosylaziridines (p-CH(3)C(6)H(4)SO(2))NCH(2)CHR (1a, R = H; 1b, R = Me; 1c, R = n-Bu; 1d, R = i-Pr) with (bpy)Ni(cod) (2; bpy = 2,2'-bipyridine; cod = 1,5-cyclooctadiene) or (bpy)NiEt(2) (3) results in elimination of cod or butane from 2 and 3, respectively, and oxidative addition of an aziridine C-N bond to give the azametallacyclobutane complexes (bpy)Ni(NTosCHRCH(2)) (4a, R = H; 4b, R = Me; 4c, R = n-Bu; 4d, R = i-Pr) as maroon solids in 50-70% isolated yields. The structure of 4b exhibits a puckered four-membered azametallacycle containing a pyramidal nitrogen and with Ni-N(1) = 1.911(5) A; the tosyl group on N and the methyl substituent on the adjacent C are disposed in an anti conformation.

View Article and Find Full Text PDF