Publications by authors named "Christopher R Behrens"

Purpose: New therapies have changed the outlook for patients with multiple myeloma, but novel agents are needed for patients who are refractory or relapsed on currently approved drug classes. Novel targets other than CD38 and BCMA are needed for new immunotherapy development, as resistance to daratumumab and emerging anti-BCMA approaches appears inevitable. One potential target of interest in myeloma is ICAM1.

View Article and Find Full Text PDF

Identification of tumor-specific cell surface antigens has proven challenging, as the vast majority of tumor-associated antigens are also expressed in normal tissues. In mesothelioma, we identified a highly specific tumor cell surface antigen that can be targeted for therapy development. Mesothelioma is caused by malignant transformation of the mesothelium, is incurable, and can be categorized into three histologic subtypes: epithelioid, biphasic, and sarcomatoid.

View Article and Find Full Text PDF

Although initially responsive to androgen signaling inhibitors (ASIs), metastatic castration-resistant prostate cancer (mCRPC) inevitably develops and is incurable. In addition to adenocarcinoma (adeno), neuroendocrine prostate cancer (NEPC) emerges to confer ASI resistance. We have previously combined laser capture microdissection and phage antibody display library selection on human cancer specimens and identified novel internalizing antibodies binding to tumor cells residing in their tissue microenvironment.

View Article and Find Full Text PDF

Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells.

View Article and Find Full Text PDF

Conventional antibody-drug conjugates (ADCs) are heterogeneous mixtures of chemically distinct molecules that vary in both drugs/antibody (DAR) and conjugation sites. Suboptimal properties of heterogeneous ADCs have led to new site-specific conjugation methods for improving ADC homogeneity. Most site-specific methods require extensive antibody engineering to identify optimal conjugation sites and introduce unique functional groups for conjugation with appropriately modified linkers.

View Article and Find Full Text PDF

With optimal target antigen selection antibody-based therapeutics can be very effective agents for hematologic malignancies, but none have yet been approved for myeloma. Rituximab and brentuximab vedotin are examples of success for the naked antibody and antibody-drug conjugate classes, respectively. Plasma cell myeloma is an attractive disease for antibody-based targeting due to target cell accessibility and the complementary mechanism of action with approved therapies.

View Article and Find Full Text PDF

Antibody drug conjugates (ADCs) are an emerging class of targeted therapeutics with the potential to improve therapeutic index over traditional chemotherapy. Drugs and linkers have been the current focus of ADC development, in addition to antibody and target selection. Recently, however,the importance of conjugate homogeneity has been realized.

View Article and Find Full Text PDF

The fields of nanotechnology and medicine have merged in the development of new imaging and drug delivery agents based on nanoparticle platforms. As one example, a mutant of bacteriophage MS2 can be differentially modified on the exterior and interior surfaces for the concurrent display of targeting functionalities and payloads, respectively. In order to realize their potential for use in in vivo applications, the biodistribution and circulation properties of this class of agents must first be investigated.

View Article and Find Full Text PDF

A highly efficient protein bioconjugation method is described involving addition of anilines to o-aminophenols in the presence of sodium periodate. The reaction takes place in aqueous buffer at pH 6.5 and can reach high conversion in 2-5 min.

View Article and Find Full Text PDF

Mycobacterium tuberculosis possesses an unusual cell wall that is replete with virulence-enhancing lipids. One cell wall molecule unique to pathogenic M. tuberculosis is polyacyltrehalose (PAT), a pentaacylated, trehalose-based glycolipid.

View Article and Find Full Text PDF

Chemical cross-linking of proteins combined with mass spectral analysis is a powerful technique that can be utilized to yield protein structural information, such as the spatial arrangement of multi-protein complexes or the folding of monomeric proteins. The succinimidyl ester cross-linking reagents are commonly used to cross-link primary amine-containing amino acids (N-terminus and lysine). However, in this study they were used to react with tyrosines as well, which allowed for the formation of cross-links between two primary amines, one primary amine and one tyrosine, or two tyrosines.

View Article and Find Full Text PDF