Objectives: Transcranial low-intensity focused ultrasound (LIFU) offers unique opportunities for precisely neuromodulating small and/or deep targets within the human brain, which may be useful for treating psychiatric and neurological disorders. This article presents a novel ultrasound system that delivers focused ultrasound through the forehead to anterior brain targets and evaluates its safety and usability in a volunteer study.
Methods: The ultrasound system and workflow are described, including neuronavigation, LIFU planning, and ultrasound delivery components.
IEEE Trans Ultrason Ferroelectr Freq Control
September 2021
Inertial cavitation induced by pulsed high-intensity focused ultrasound (pHIFU) has previously been shown to successfully permeabilize tumor tissue and enhance chemotherapeutic drug uptake. In addition to HIFU frequency, peak rarefactional pressure ( p ), and pulse duration, the threshold for cavitation-induced bioeffects has recently been correlated with asymmetric distortion caused by nonlinear propagation, diffraction and formation of shocks in the focal waveform, and therefore with the transducer F -number. To connect previously observed bioeffects with bubble dynamics and their attendant physical mechanisms, the dependence of inertial cavitation behavior on shock formation was investigated in transparent agarose gel phantoms using high-speed photography and passive cavitation detection (PCD).
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
May 2021
Boiling histotripsy (BH) uses millisecond-long ultrasound (US) pulses with high-amplitude shocks to mechanically fractionate tissue with potential for real-time lesion monitoring by US imaging. For BH treatments of abdominal organs, a high-power multielement phased array system capable of electronic focus steering and aberration correction for body wall inhomogeneities is needed. In this work, a preclinical BH system was built comprising a custom 256-element 1.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2021
Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron.
Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone.
The purpose of this work was to investigate whether low-frequency, low-intensity (20 kHz, <100 mW/cm(2), spatial-peak, temporal-peak intensity) ultrasound, delivered with a lightweight (<100 g), tether-free, fully wearable, battery-powered applicator, is capable of reducing inflammation in a mouse model of rheumatoid arthritis. The therapeutic, acute, anti-inflammatory effect was estimated from the relative swelling induced in mice hindlimb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near-infrared labeled 2-deoxyglucose.
View Article and Find Full Text PDFIsolated neonatal rat ventricular cardiomyocytes were used to study the influence of ultrasound on the chronotropic response in a tissue culture model. The beat frequency of the cells, varying from 40 to 90 beats/min, was measured based upon the translocation of the nuclear membrane captured by a high-speed camera. Ultrasound pulses (frequency = 2.
View Article and Find Full Text PDFThis paper focuses on the development of a finite-element model and subsequent stationary analysis performed to optimize individual flexural piezoelectric elements for operation in the frequency range of 20-100kHz. These elements form the basic building blocks of a viable, un-tethered, and portable ultrasound applicator that can produce intensities on the order of 100mW/cm(2) spatial-peak temporal-peak (I(SPTP)) with minimum (on the order of 15V) excitation voltage. The ultrasound applicator can be constructed with different numbers of individual transducer elements and different geometries such that its footprint or active area is adjustable.
View Article and Find Full Text PDF